pycomm3
Release 1.2.14

lan Ottoway

Aug 27, 2023

1 Introduction
2 Drivers

3 Disclaimer

4 Setup

5 Python and OS Support

51 ContentS v v i it e e

Python Module Index

Index

CONTENTS

pycomma3, Release 1.2.14

CONTENTS 1

https://pypi.python.org/pypi/pycomm3
https://pypi.python.org/pypi/pycomm3
https://pypi.python.org/pypi/pycomm3
https://pypi.python.org/pypi/pycomm3
https://github.com/ottowayi/pycomm3
https://github.com/ottowayi/pycomm3
https://github.com/ottowayi/pycomm3
https://pycomm3.readthedocs.io/en/latest/
https://gitmoji.dev

pycomma3, Release 1.2.14

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

pycomm3 started as a Python 3 fork of pycomm, which is a Python 2 library for communicating with Allen-Bradley
PLCs using Ethernet/IP. The initial Python 3 port was done in this fork and was used as the base for pycomm3. Since
then, the library has been almost entirely rewritten and the API is no longer compatible with pycomm. Without the hard
work done by the original pycomm developers, pycomm3 would not exist. This library seeks to expand upon their great
work.

https://github.com/ruscito/pycomm
https://github.com/bpaterni/pycomm/tree/pycomm3

pycomma3, Release 1.2.14

4 Chapter 1. Introduction

CHAPTER
TWO

DRIVERS

pycomm3 includes 3 drivers:

e CIPDriver
This driver is the base driver for the library, it handles common CIP services used by the other drivers.
Things like opening/closing a connection, register/unregister sessions, forward open/close services, device
discovery, and generic messaging. It can be used to connect to any Ethernet/IP device, like: drives, switches,
meters, and other non-PLC devices.

* LogixDriver
This driver supports services specific to ControlLogix, CompactLogix, and Micro800 PLCs. Services like
reading/writing tags, uploading the tag list, and getting/setting the PLC time.

¢ SLCDriver
This driver supports basic reading/writing data files in a SLC500 or MicroLogix PLCs. It is a port of the
SlcDriver from pycomm with minimal changes to make the API similar to the other drivers. Currently
this driver is considered legacy and it’s development will be on a limited basis.

https://docs.pycomm3.dev/en/latest/usage/cipdriver.html
https://docs.pycomm3.dev/en/latest/usage/logixdriver.html
https://docs.pycomm3.dev/en/latest/usage/slcdriver.html

pycomma3, Release 1.2.14

6 Chapter 2. Drivers

CHAPTER
THREE

DISCLAIMER

PLCs can be used to control heavy or dangerous equipment, this library is provided “as is”” and makes no guarantees on
its reliability in a production environment. This library makes no promises in the completeness or correctness of the
protocol implementations and should not be solely relied upon for critical systems. The development for this library is
aimed at providing quick and convenient access for reading/writing data inside Allen-Bradley PLCs.

pycomma3, Release 1.2.14

8 Chapter 3. Disclaimer

CHAPTER
FOUR

SETUP

The package can be installed from PyPl using pip: pip install pycomm3 or python -m pip install pycomm3.

Optionally, you may configure logging using the Python standard logging library. A convenience method is provided
to help configure basic logging, see the Logging Section in the docs for more information.

https://pypi.org/project/pycomm3/
https://docs.python.org/3/library/logging.html
https://docs.pycomm3.dev/en/latest/getting_started.html#logging

pycomma3, Release 1.2.14

10 Chapter 4. Setup

CHAPTER
FIVE

PYTHON AND OS SUPPORT

pycomm3 is a Python 3-only library and is supported on Python versions from 3.6.1 up to 3.10. There should be no
OS-specific requirements and should be able to run on any OS that Python is supported on. Development and testing is
done primarily on Windows 10. If you encounter an OS-related problem, please open an issue in the GitHub repository
and it will be investigated.

Attention: Python 3.6.0 is not supported due to NamedTuple not supporting default values and methods until
3.6.1

5.1 Contents

5.1.1 Getting Started

Creating a Driver

Drivers are simple to create and use, the quickest way is to use them within a context manager (with statement). Most of
the examples in the documentation will shown them used in that way. If you are using them as part of a larger program
or creating long-lived connections, you may not want to use the context manager in this case. When used outside a
context manager, you will need to call the open () method first and the cIose() method on shutdown. Failing to
close the connection could cause issues communicating with the device. Each driver opens a single connection to the
device, you may use multiple instances to create multiple connections. It is also the user’s responsibility to maintain
the connection, the drivers do not implement any periodic handshaking. The default timeout is fairly long, but a long
lived connection will need to issue a request usually at least once a minute or the PLC may close the connection.

Each driver requires a path argument, this is a CIP path to the destination device. The paths used in pycomm3 are
similar to how they appear in Logix.

There are three possible forms:

IP Address Only (10.20.30.100)
Use for devices without a backplane (drives, switches, Micro800 PLCs, etc) or for PLCs in slot O of
a backplane. Only the LogixDriver and SLCDriver will automatically add the backplane/® to the
path if no slot is specified.

IP Address/Slot (10.20.30.100/1)
Use for PLCs in a backplane that are not in slot 0. Only supported in LogixDriver and SLCDriver.

CIP Routing Path (1.2.3.4/backplane/2/enet/6.7.8.9/backplane/0)
This is a full CIP route to a device, it should appear similar to how paths are shown in Logix. For
port selection, use backplane or bp for the backplane and enet for the ethernet port. Both slash (/)
and backslash (\) are supported.

11

https://github.com/ottowayi/pycomm3
https://docs.python.org/3/library/typing.html#typing.NamedTuple

pycomma3, Release 1.2.14

Note: Both the IP Address and IP Address/Slot options are shortcuts, they will be replaced with the CIP
path automatically in the LogixDriver and SLCDriver, the CIPDriver will not modify the path.

Note: Path segments may be delimited by forward or back slashes or commas, e.g. 10.10.30.100,bp, 0.
To use a custom port, provide it following a colon with the IP address, e.g. 10.20.30.100:4444.

>>> from pycomm3 import CIPDriver

>>> with CIPDriver('10.20.30.100') as drive:
>>> print(drive)

Device: AC Drive, Revision: 1.2

The default behavior is to use the Extended Forward Open service when opening a connection. This allows the use of
~4KB of data for each request, the standard is only ~500 bytes. Although this requires the communications module to
be an EN2T or newer and the PLC firmware to be version 20 or newer. Upon opening a connection, the CIPDriver
will attempt an Extended Forward Open, if that fails it will then try using the standard Forward Open.

Creating a LogixDriver

The LogixDriver has two additional arguments:

init_tags (default True)
When true, the driver will upload all tags in the PLC and the definitions for any UDTs and AOls.
These definitions are required for the read () and write () methods to work.

init_program_tags (default True)
When uploading the tag list, if True all program scoped tags are uploaded. Set False to upload
controller-scoped tags only. This arg is only checked if init_tags is True.

There is some data that is collected about the target controller when a connection is first established. It will call both the
get_plc_info() and get_plc_name() methods. get_plc_info() returns a dict of the info collected and stores
that information, making it accessible from the info property. get_plc_name () will return the name of the program
running in the PLC and store it in info['name']. See info for details on the specific fields.

After the controller info has been retrieved, the driver will begin uploading the tag list unless init_tags option has
not been set False. Depending on the number of tags, the PLC model, and other factors, the tag list could take some
time to upload. A very large tag list on an old processor with high CPU utilization could take 10-15 seconds, while a
small tag list or a new processor might take <1 second. If you are setting up multiple drivers on the same PLC, startup
time can be saved by uploading the tag list in the first driver and disabling init_tags in the others. Then you can pass
the uploaded tag list from the first driver to the other drivers, shown below.

from pycomm3 import LogixDriver

first_plc = LogixDriver('10.20.30.100")

first_plc.open() # uploads the tag list

second_plc = LogixDriver('10.20.30.100', init_tags=False)
second_plc._tags = first_plc.tags

second_plc.open() # doesn't upload any tags

12 Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

Creating a SLCDriver

Currently, there is no additional configuration for a SLCDriver over a CIPDriver.

Response Tag Object

Many methods return a Tag object, like generic_message () or the read and write methods of the LogixDriver
or SLCDriver. The truthiness of a Tag object represents the status of a request. A successful request will have a value
that is not None and the error attribute is None. Anything otherwise will be a failed request. The error attribute will
contain either the CIP error message or exception raised during the request.

class pycomm3.Tag(tag, value, type, error)

__bool__0O

True if both value is not None and error is None, Fal se otherwise
property tag

tag name of tag read/written or request name (generic message)
property value

value read/written, may be None on error
property type

data type of tag
property error

error message if unsuccessful, else None

Data Types

Data types are a major component of pycomm3, they are classes used to represent any tag or CIP object. They are
able to encode and decode to and from Python values and bytes. Atomic and structure values along with arrays of
either are supported. Each elementary (primitive) data type is provided as well as some common derived (structure of
elementary types) types. See the Data Types for all available CIP types and Custom Types for any pycomm3 provided
custom types. The type classes provide two class methods: encode and decode. These are class methods, meaning
they do not require an instance of they type to be created. In fact, the only time an instance of a type is used is when
added members (with a name) to a structure. The encode method takes a Python object and encodes it to bytes. The
decode method takes bytes and returns the corresponding Python object.

Elementary Types

Also known as primitives, these types are the building blocks for all CIP data types. These are basic types that store a
single value, like integers, floats, strings, etc. All of these types can be imported directly from pycomm3, for a full list
of the types refer to Data Types.

>>> from pycomm3 import DINT, SHORT_STRING
>>> DINT.encode(112233)

b'i\xb6\x01\x00"'

>>> DINT.decode(b'\x12\x34\x56\x78")
2018915346

>>> SHORT_STRING.encode('Hello there!')
b'\x0cHello there!'

(continues on next page)

5.1. Contents 13

pycomma3, Release 1.2.14

(continued from previous page)

>>> SHORT_STRING.decode(b'\x0eGeneral Kenobi')
'General Kenobi'

Structure Types

Structures are complex types composed of any number of different elementary or struct member types. The Struct ()
factory is used to create new struct types. To create a new struct, a list of members is required. Members must be
DataType, either classes (unnamed) or instance (named). Creating named members is really the only time a user
would create an instance of a type. When decoding a struct, the value is returned as dictionary of {member_name:
value}. Any unnamed members will be excluded from the return value, also since the return value is a dict, member
names should be unique.

>>> from pycomm3 import Struct, DINT, STRING, REAL
>>> MyStruct = Struct(DINT('code'), STRING('name'), REAL('value'))
>>> struct_values = {
'code': 80,
'name': 'my name',
e 'value': 123.45

.}
>>> MyStruct.encode(struct_values)
b'P\x00\x00\x00\x07\x00my namef\xe6\xf6B'

>>> YourStruct = Struct(DINT, DINT('code'), DINT('type'))
>>> YourStruct.decode(your_bytes) # assume your_bytes is an encoded YourStruct
{'code': 34, 'type': 73} # notice the first member is unnamed and not included

Both dictionaries and sequences are supported for encoding structs. In the first example, we could have done:
struct_values = [80, 'my name', 123.45] and gotten the same result. When encoding a struct with multi-
ple unnamed members, using a list of values is the easiest solution. To use a dict you must include a None key and
value to be used for the unnamed members. But, if there are multiple unnamed members of incompatible types, you
will have to use a list/sequence instead.

Arrays

Arrays are a homogenous sequence of a DataType (either elementary or structs). Any type can be used to create an
array of that type using the [] operator or the Array () factory. There are two important components for an array, the
element type and the length. The element type is the DataType and the length specifies the number of elements. The
length has 3 options:

Fixed
Where the length is specified as an int, the array length is fixed to that number of elements.

>>> SINT[5].encode([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) # notice it only encodes/
—decodes 5 elements

b'\x01\x02\x03\x04\x05"

>>> SINT[5].decode(b'\x01\x02\x03\x04\x05\x06\x07\x08\t\n")

[1, 2, 3, 4, 5]

Derived
Where the length is specified as a DataType. When decoding an array, the length will be decoded first using the

14 Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

type specified and then decoded that many elements. Encoding will encode however many values are supplied,
but does not add the encoded length.

>>> SINT[SINT].encode([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) # length type is not used.
—when encoding

b'\x01\x02\x03\x04\x05\x06\x07\x08\t\n'

>>> SINT[SINT].decode(b'\x05\x01\x02\x03\x04\x05\x00\x00\x00")

[1, 2, 3, 4, 5]

Unbound
Where the length is None. When decoding, the array will consume the entire byte buffer and decode as many
elements as possible. Encoding will encode however many values are supplied.

>>> SINT[None].encode([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) # length type is not used.
—when encoding

b'\x01\x02\x03\x04\x05\x06\x07\x08\t\n'

>>> SINT[None].decode(b'\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A")

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Logging

This library uses the standard Python logging module. You may configure the logging module as needed. The DEBUG
level will log every sent/received packed and other diagnostic data. Set the level to higher than DEBUG if you only wish to
see errors, exceptions, etc. A helper method called configure_default_logger is provided to setup basic logging.
There are three optional parameters, level, filename, and logger. level (default logging.INFO) is the logging
level. filename (default None) if set, will also log to the specified file. By default this function only configures the
pycomm3 logger. You can also configure your own custom logger by passing the name in using the 1ogger parameter.
The pycomm3 logger is always configured. To configure the root logger set logger to an empty string (' ").

from pycomm3.logger import configure_default_logger

configure_default_logger(filename="c:/tmp/pycomm3.log"')

Produces output similar to:

2021-02-26 14:37:41,389 [DEBUG] pycomm3.cip_driver.CIPDriver.open(): Opening connection.
—to 192.168.1.236

2021-02-26 14:37:41,393 [DEBUG] pycomm3.cip_driver.CIPDriver.send(): Sent:.
—.RegisterSessionRequestPacket (message=[b'\x01\x00', b'\x00\x00'])

2021-02-26 14:37:41,397 [DEBUG] pycomm3.cip_driver.CIPDriver.send(): Received:.
—RegisterSessionResponsePacket(session=184719106, error=None)

2021-02-26 14:37:41,398 [INFO] pycomm3.cip_driver.CIPDriver._register_session():.
—.Session=184719106 has been registered.

2021-02-26 14:37:41,398 [INFO] pycomm3.logix_driver.LogixDriver._initialize_driver():.
—Initializing driver...

pycomm3 also uses a custom logging level for verbose logging, this level also prints the contents of each packet send
and received. If submitting a bug report, this level of logging is the most helpful.

from pycomm3.logger import configure_default_logger, LOG_VERBOSE
configure_default_logger(level=LOG_VERBOSE, filename='c:/tmp/pycomm3.log"')

Verbose output:

5.1. Contents 15

https://docs.python.org/3/library/logging.html

pycomma3, Release 1.2.14

2021-02-26 14:42:36,752 [DEBUG] pycomm3.cip_driver.CIPDriver.open(): Opening connection.
—to 192.168.1.236

2021-02-26 14:42:36,765 [VERBOSE] pycomm3.cip_driver.CIPDriver._send(): >>> SEND >>>
(0000) 65 00 04 00 00 00 00 00 00 00 00 600 5f 70 79 63 geecccccccee _DYyC

(0010) 6f 6d 6d 5f 00 00 60 00 01 00 00 00 omm_eeeecccoee

2021-02-26 14:42:36,766 [DEBUG] pycomm3.cip_driver.CIPDriver.send(): Sent:.
—RegisterSessionRequestPacket(message=[b'\x01\x00', b'\x00\x00'])

2021-02-26 14:42:36,768 [VERBOSE] pycomm3.cip_driver.CIPDriver._receive(): <<< RECEIVE <<
o<

(0000) 65 00 04 00 02 98 02 Ob 00 00 00 00 5f 70 79 63 geecccccccce _DyC

(0010) 6f 6d 6d 5f 00 00 00 00 601 00 00 00 omm_eeeecccee

2021-02-26 14:42:36,768 [DEBUG] pycomm3.cip_driver.CIPDriver.send(): Received:.
—RegisterSessionResponsePacket(session=184719362, error=None)

2021-02-26 14:42:36,769 [INFO] pycomm3.cip_driver.CIPDriver._register_session():.
—Session=184719362 has been registered.

2021-02-26 14:42:36,769 [INFO] pycomm3.logix_driver.LogixDriver._initialize_driver():.
—Initializing driver...

2021-02-26 14:42:36,769 [VERBOSE] pycomm3.cip_driver.CIPDriver._send(): >>> SEND >>>
(0000) 63 00 00 00 02 98 02 Ob 00 00 00 00 5f 70 79 63 Ceeecccsssee _DyC

(0010) 6f 6d 6d 5f 00 00 00 00 omm_eeee

2021-02-26 14:42:36,769 [DEBUG] pycomm3.cip_driver.CIPDriver.send(): Sent:.
—ListIdentityRequestPacket(message=[])

2021-02-26 14:42:36,771 [VERBOSE] pycomm3.cip_driver.CIPDriver._receive(): <<< RECEIVE <<
o<

(0000) 63 00 45 00 02 98 02 Ob 00 00 00 00 5f 70 79 63 CeEeeeesccee pyC
(0010) 6f 6d 6d 5f 00 00 00 00 01 00 Oc 00 3f 00 01 00 omm_eeeeecce’ece
(0020) 00 02 af 12 cO® a8 01 ec 00 00 00 60 00 00 00 00 eeccccccccccccce
(0030) 01 00 Oc 00 bf 00 14 13 30 00 90 be le cO 1d 31 eccccccc(ecccce]
(0040) 37 36 39 2d 4c 32 33 45 2d 51 42 46 43 31 20 45 769-L23E-QBFC1 E
(0050) 74 68 65 72 6e 65 74 20 50 6f 72 74 03 thernet Porte

5.1.2 Driver Usage
Using CIPDriver

The CIPDriver is the base class for the other drivers, so everything on this page also applies to the other drivers as
well.

Discovery and Identification

The CIPDriver provides to class methods for discovering and identifying devices. And because they are class methods,
they can be used without creating an instance of a driver first. The CIPDriver.discover () method will broadcast
a request for all devices on the network to identify themselves. This is similar to how the RSLinx Ethernet/IP driver
works. It returns a list of dictionaries, where each dict is the Identity Object of the device.

>>> from pycomm3 import CIPDriver
>>> CIPDriver.discover()

For example, here is a response with 2 devices discovered:

16 Chapter 5. Python and OS Support

pycomm3, Release 1.2.14

[{'encap_protocol_version': 1, 'ip_address': '"10.10.0.120', 'vendor': 'Rockwell.,
—Automation/Allen-Bradley',
'product_type': 'Communications Adapter', 'product_code': 185, 'revision': {'major': 2,

< 'minor': 7},
'status': b'T\x00', 'serial': 'aabbcdd', 'product_name': '1763-L16BWA B/7.00', 'state

<"1 0%,
{'encap_protocol_version': 1, 'ip_address': '10.10.1.100', 'vendor': 'Rockwell.,
—Automation/Allen-Bradley',

'product_type': 'Communications Adapter', 'product_code': 191, 'revision': {'major':.

20, 'minor': 19},
'status': b'O\x00', 'serial': 'eeffgghh', 'product_name': '1769-L23E-QBFC1 Ethernet.
—Port', 'state': 3}]

The CIPDriver.list_identity() method is similar, but can be used to identify a specific device. Instead of broad-
casting the request to every device, it requires a path to send the request to. This path argument is the same type of
CIP path used in creating a driver and detailed in Creating a Driver.

>>> from pycomm3 import CIPDriver
>>> CIPDriver.list_identity('10.10.0.120")

{'encap_protocol_version': 1, 'ip_address': '10.10.0.120', 'vendor': 'Rockwell.
—Automation/Allen-Bradley',
'product_type': 'Communications Adapter', 'product_code': 185, 'revision': {'major': 2,

< 'minor': 7},
'status': b'T\x00', 'serial': 'aabbcdd', 'product_name': '1763-L16BWA B/7.00', 'state':.

-0}

>>> CIPDriver.list_identity('10.10.1.100")

{'encap_protocol_version': 1, 'ip_address': '10.10.1.100', 'vendor': 'Rockwell.
—Automation/Allen-Bradley',

'product_type': 'Communications Adapter', 'product_code': 191, 'revision': {'major': 20,

—'minor': 19},
'status': b'O\x00', 'serial': 'eeffgghh', 'product_name': '1769-L23E-QBFC1 Ethernet Port
', 'state': 3}

Module Identification

For rack-based devices, the CIPDriver.get_module_info () method will return the identity for a slot in the rack.
This method is not a class method, so it does require an instance of the driver to be created.

>>> from pycomm3 import CIPDriver

>>> driver = CIPDriver('10.10.1.100")

>>> driver.open()

>>> driver.get_module_info(®) # Slot 0: PLC

{'vendor': 'Rockwell Automation/Allen-Bradley', 'product_type': 'Programmable Logic.
—Controller', 'product_code': 51,

'revision': {'major': 16, 'minor': 22}, 'status': b' \x10', 'serial': '00000000',
'product_name': '1756-L55/A 1756-M13/A LOGIX5555'}

>>> driver.get_module_info(l) # Slot 1: EN2T

{'vendor': 'Rockwell Automation/Allen-Bradley', 'product_type': 'Communications Adapter',
— 'product_code': 166,
'revision': {'major': 5, 'minor': 8}, 'status': b'O\x00', 'serial': '00000000', 'product_

—name': '1756-EN2T/B'}
>>> driver.close()

5.1. Contents 17

pycomma3, Release 1.2.14

Generic Messaging

Generic messaging is a key feature of pycomm3, it allows the user to send custom CIP messages or implement fea-
tures not included in one of the drivers. In fact, many features available in the drivers are implemented using the
generic_message () method. This method operates in a similar way to CIP Generic messages in Logix with the MSG

instruction. For more examples see the Generic Messaging section.

To demonstrate how a generic message can be used, below is the process that was used to implement the

get_plc_name () feature for the LogixDriver.

First, the Obtaining the Controller’s Program Name article from the Rockwell Knowledge Base shows how to configure
a MESSAGE to read the program name from a PLC. It contains all the information we need: CIP service, class, instance,

etc.

Message Configuration - CIP_Mame

Ennfiguratinnl I:Dmmunicatil:unl Tag I

tezzage Type:

Service I Cuzharn * ﬂ j

Source Element;

x|

| =l

Type:
’/ Source Length: ||:| 3: [Butesz]
Service :
Code |1 [Hex] Class: IE@ Hexl b estination |M_I.I_N ame |
Ingtance: I@ Attribute:| 0 [Hex] T — |
Enable) Enable "aiting b Skart ® Done Done Length: 21
3 Enmor Code: Extended Emor Code: [Timed Out &
Error Path:
Error Test:
k. I Cancel | Lpply | Help

1. The service type is ®x01, which is the Get_Attributes_A1l1l service define in the Common Industrial Protocol
Specification, Volume 1, Chapter 4: CIP Object Model. See CIP Services and Class Codes for the predefined
CIP services, classes, and other objects available in pycomm3. If the service is not already defined, you use either

an int or a bytes string (0x01, 1, b'\x01).

The instance number of the class we want, 1.

A

The class code, 0x64 is not named in the doc, but is defined as ClassCode.program_name.

The attribute is 0, so we can ignore it and not set the attribute parameter.

Since we’re not in the PLC, we’re not storing the response in a tag. If we set the data_type parameter to a

DataType, that type will be used to decode the response. Else, the raw response bytes will be returned.

Next, the screenshot below contains enough information for us to determine the data type that can be used to decode

the response.

18

Chapter 5. Python and OS Support

https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/23341

pycomm3, Release 1.2.14

The result will be deposited into a SINT array, which can very with length depending on the

names stored.
The first value is the string length.
The Next is a NULL terminator marking the beginning of the string.

The following values starting at My_Name[2} are the controllers name characters.

Controller Tags - Flex2{controller)

Scope: IFIe:42[controller] j Shaw: IShUW Al ;I Sork: ITag Mame j
Tag Mame 2 | Walue € | Force Mask & | Style Type
[=J-by_Mame Lot fo. .1 |ASCH SIMT[50]
[]-by_Mamel0] '£05! ASCIH SIMT
[I-by_Mammel[1] 'g00! ASCIH SIMT
[I-by_Mamel2] 'F! ASCIH SIMT
[]-by_Mamel3] e ASCIH SIMT
[FI-by_Mamneld] et ASCIH SIMT
[I-by_Mamel5] x! ASCIH SIMT
[]-by_MammelE] - ASCIH SIMT
[FI-by_Mamel 7] 'g00! ASCIH SIMT
P by Wamefd] 1400 A5CI SINT
[]-by_Mame[S] 'g00! ASCI SIMT

While the doc doesn’t specifically say the response type, it’s shows that it is stored in a SINT[50]. The first two
bytes contains the length of the string, which corresponds to a integer(INT or UINT). Then the string data is stored in
the remainder of the array, since PLCs are limited to fixed-size arrays the destination tag needs to be long enough to
contain the maximum size possible. In Python we do not have that limitation, but this information tells us that the
response is a string, with 1 byte per character, and the length of the string is stored in the first 2 bytes. That corresponds
to the CIP STRING data type, which is a standard type that is already defined and we can just use.

Taking this information, we were able configure the generic_message () method to read the PLC program name:

@with_forward_open
def get_plc_name(self) -> str:
Requests the name of the program running in the PLC. Uses KB 23341 _ for.
—.implementation.

. _23341: https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/
23341

:return: the controller program name

e

try:
response = self.generic_message(
service=Services.get_attributes_all,
class_code=ClassCode.program_name,
instance=1,
data_type=STRING,
name="get_plc_name",

(continues on next page)

5.1. Contents 19

pycomma3, Release 1.2.14

(continued from previous page)

if not response:
raise ResponseError(f"response did not return valid data - {response.
—error}'")

self._info["name"] = response.value
return self._info['"'name"]
except Exception as err:
raise ResponseError("failed to get the plc name") from err

Tip: Setting the name parameter is helpful because it will be used by the built in logging and can help differentiate
between calls:

2021-03-09 18:09:50,802 [INFO] pycomm3.cip_driver.CIPDriver.generic_message(): Sending.
—.generic message: get_plc_name
2021-03-09 18:09:50,802 [VERBOSE] pycomm3.cip_driver.CIPDriver._send(): >>> SEND >>>

(0000) 70 00 1c 00 60 Ob 02 Ob 00 00 00 00 5f 70 79 63 peeeeccecccee pyC
(0010) 6f 6d 6d 5f 00 00 00 00 00 00 00 00 Oa 00 02 00 OllM_eeeeecccccee
(0020) al 00 04 00 cl1 04 35 01 bl 00 08 00 53 00 01 02 ®0ccce500000S00e
(0030) 20 64 24 01 d$e

2021-03-09 18:09:50,803 [DEBUG] pycomm3.cip_driver.CIPDriver.send(): Sent:.
—.GenericConnectedRequestPacket (message=[b'S\x00', b'\x01', b'\x02 d$\x01', b''])
2021-03-09 18:09:50,807 [VERBOSE] pycomm3.cip_driver.CIPDriver._receive(): <<< RECEIVE <<
—<

(0000) 70 00 36 00 00 Ob 02 Ob 00 00 00 00 00 00 00 00 peGeecccccccccce
(0010) 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 00 eeccccccccccccce
(0020) al 00 04 00 4a b7 cb 55 bl 00 22 00 53 00 81 00 eccejoeJoe"eSeee
(0030) 00 00 Oc 00 70 79 63 6f 6d 6d 33 5f 64 65 6d 6f eeeepycomm3_demo
(0040) 00 00 00 00 02 00 01 00 64 00 02 00 09 00 eecccccoeccce

2021-03-09 18:09:50,807 [DEBUG] pycomm3.cip_driver.CIPDriver.send(): Received:.
—.GenericConnectedResponsePacket(service=b'\x01', command=b'p\x00', error=None)
2021-03-09 18:09:50,807 [INFO] pycomm3.cip_driver.CIPDriver.generic_message(): Generic.
—message 'get_plc_name' completed

Using LogixDriver

Tags and Data Types

When creating the driver it will automatically upload all of the controller scope tag and their data type definitions.
These definitions are required for the read() and write() methods to function. Those methods abstract away a
lot of the details required for actually implementing the Ethernet/IP protocol. Uploading the tags could take a few
seconds depending on the size of program and the network. It was decided this small upfront overhead provided a
greater benefit to the user since they would not have to worry about specific implementation details for different types
of tags. The init_tags kwarg is True by default, meaning that all of the controller scoped tags will be uploaded.
init_program_tags is a separate flag to control whether or not all the program-scoped tags are uploaded as well. By
default, init_program_tags is True, set to False to disable and only upload controller-scoped tags.

Below shows how the init tag options are equivalent to calling the get_tag_1list () method.

20 Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

>>> plcl = LogixDriver('10.20.30.100")

>>> plc2 = LogixDriver('10.20.30.100', init_tags=False)

>>> plc2.get_tag_list()

>>> plcl.tags == plc2.tags

True

>>> plc3 = LogixDriver('10.20.30.100', init_program_tags=True)
>>> plc4 = LogixDriver('10.20.30.100")

>>> plcd.get_tag_list(program='*') # '*' means all programs
>>> plc3.tags == plc4d.tags

True

Tag Structure

Each tag definition is a dict containing all the details retrieved from the PLC. get_tag_Ilist () returns a list of dicts
for the tag list while the LogixDriver. tags property stores them as a dict of {tag name: definition}.

Tag Definition Properties:

tag name
Symbolic name of the tag

instance_id
Internal PLC identifier for the tag. Used for reads/writes on v21+ controllers. Saves space in packet by not
requiring the full tag name to be encoded into the request.

tag type

* 'atomic' base data types like BOOL, DINT, REAL, etc.

e 'struct' complex data types like STRING, TIMER, PID, etc as well as UDTs and AOIs.
data_type

e 'DINT'/'REAL'/etc name of data type for atomic types

e {data type definition} for structures, detailed in Structure Definitions
data_type_name

¢ the string name of the data type: 'DINT'/'REAL'/'TIMER'/'MyCoolUDT'

string
Optional string size if the tag is a STRING type (or custom string)

external_access
'Read/Write'/'Read Only'/'None' matches the External Access tag property in the PLC

dim
number dimensions defined for the tag
* 0 - not an array
e 1-3-al to 3 dimension array tag, e.g. DINT[5] -> 1, DINT[5,5] -> 2, DINT[5,5,5] -> 3

dimensions
length of each dimension defined, 0 if dimension does not exist. [dim®, diml, dim2]

e DINT[5] -> [5, 0, 0]
e DINT[5, 10] -> [5, 10, 0]
e DINT[5, 10, 15] -> [5, 10, 15]

5.1. Contents 21

pycomma3, Release 1.2.14

alias
True/False if the tag is an alias to another.

Note: This is not documented, but an educated guess found through trial and error.

type_class
the DataType that was created for this tag

Structure Definitions

While uploading the tag list, any tags with complex data types will have the full definition of structure uploaded as well.
Inside a tag definition, the data_type attribute will be a dict containing the structure definition. The LogixDriver.
data_types property also provides access to these definitions as a dict of {data type name: definition}.

Data Type Properties:

name
Name of the data type, UDT, AOI, or builtin structure data types

attributes
List of names for each attribute in the structure. Does not include internal tags not shown in Logix, like the host
DINT tag that BOOL attributes are mapped to.

template
dict with template definition. Used internally within LogixDriver, allows reading/writing of full structs and
allows the read/write methods to monitor the request/response size.

internal_tags
A dict with each attribute (including internal, not shown in Logix attributes) of the structure containing the
definition for the attribute, {attribute: {definition}}.

Definition:

tag_type
Same as Tag Structure

data_type
Same as Tag Structure

data_type_name
Same as Tag Structure

string
Same as Tag Structure

offset
Location/Byte offset of this tag’s data in the response data.
bit
Optional BOOL tags are aliased to internal hidden integer tags, this indicates which bit it is aliased to.

array
Optional Length of the array if this tag is an array, 0 if not an array,

Note: attributes and internal_tags do NOT include InOut parameters.

22 Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

type_class
The DataType type that was created to represent this structure

Reading/Writing Tags

All reading and writing is handled by the read() and write() methods. The original pycomm and other similar
libraries will have different methods for handling different types like strings and arrays, this is not necessary in pycomm3
due to uploading the tag list and creation of a DataType class for each type. Both methods accept any number of tags,
they will automatically use the Multiple Service Packet (0x0A) service and track the request/return data size making
sure to stay below the connection size. If there is a tag value that cannot fit within the request/reply packet, it will
automatically handle that tag independently using the Read Tag Fragmented (0x52) or Write Tag Fragmented (0x53)
requests. Users do not have to worry about the number of tags or their size in any single request, this is all handled
automatically by the driver.

Program-Scoped Tags

Program-scoped tag names use the format Program:<program>.<tag>. For example, to access a tag named SomeTag
in the program MainProgram you would use Program:MainProgram.SomeTag in the request. The tag list uploaded by
the driver will also keep this format for the tag names.

Array Tags

To access an index of an array, include the index inside square brackets after the tag name. The format is the same as
in Logix, where multiple dimensions are comma separated, e.g. an_array[5] for the 5th element of an_array or
array2[1,0] to access the first element of the second dimension of array2. Not specifying an index is equivalent to
index 0, i.e array == array[0].

Whether reading or writing, the number of elements needs to be specified. To do so, specify the number of elements
inside curly braces at the end of the tag name, e.g. an_array{5} for 5-elements of an_array. If omitted, the number
of elements is assumed to be 1, i.e. an_array == an_array[0] == an_array[0]{1}. Only a single element count
is used. For 2 and 3 dimensional arrays, the element count is the total number of elements across all dimensions. The
tables below show a couple examples of how the element count works for multi-dimension arrays.

array (DINT[3, 2]) | array{4} | array[1,1]{3}

array|[0, 0]

array|[0, 1]
1

[
array[1, 0]
array[1, 1]
[
[

| | | X

array[2, 0]
array[2, 1]

[<] <

array (SINT[2, 2, 2]) | array{4} | array[0,1,0]{5}
array|0, 0, 0]
array[0, O, 1]
array|[0, 1, 0]
array[0, 1, 1]
array[1, 0, 0]
array[1, 0, 1]

(1,1,

(1, 1,

| < > <

elieiRaiRalke

array 0]
array 1]

il

s

5.1. Contents 23

pycomma3, Release 1.2.14

BOOL Arrays

BOOL arrays work a little differently due them being implemented as DWORD arrays in the PLC. (That is the reason
you can only make BOOL arrays in multiples of 32, DWORDs are 32 bits.) The element count in the request (' {#} ')
represents the number of BOOL elements. To write multiple elements to a BOOL array, you must write the entire
underlying DWORD element. This means the list of values must be in multiples of 32 and the starting index must also
be multiples of 32, e.g. 'bools{32}', "bools[32]{64}"'. There is no limitation on reading multiple elements or
reading and writing a single element.

Reading Tags

LogixDriver.read() accepts any number of tags, all that is required is the tag names.Reading of entire structures
is support as long as none of the attributes have an external access of None. To read a structure, just request the base
name and the value for the Tag object will a a dict of {attribute: value}

Read an atomic tag

>>> plc.read('dint_tag')
Tag(tag='dint_tag', value=0, type='DINT', error=None)

Read multiple tags

>>> plc.read('tag_1"', 'tag_2', 'tag_3")
[Tag(tag="tag_l', value=100, type='INT', error=None), Tag(tag='tag_2', value=True, type=
—"'BOOL', error=None), ...]

Read a structure

>>> plc.read('simple_udt')
Tag(tag='"simple_udt', value={'attrl': 0, 'attr2': False, 'attr3': 1.234}, type='SimpleUDT
— "', error=None)

Read arrays

>>> plc.read('dint_array ') # starts at index 0
Tag(tag='dint_array', value=[1l, 2, 3, 4, 5], type='DINT[5]', error=None)
>>> plc.read('dint_array[20] ') # read 3 elements starting at index 20

Tag(tag="dint_array[20]"', value=[20, 21, 22], type='DINT[3]', error=None)

Verify all reads were successful

>>> tag_list = ['tagl', 'tag2', ...]

>>> results = plc.read(*tag_list)

>>> if all(results):

. print('All tags read successfully')
All tags read successfully

24 Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

Writing Tags

LogixDriver.write () method accepts any number of tag-value pairs of the tag name and value to be written. For
writing a single tag, you can do write(<tag name>, <value>), but for multiple tags a sequence of tag-value tuples
is required (write((<tagl>, <valuel>), (<tag2>, <value2>))). For arrays, the value should be a list of the
values to write. A RequestError will be raised if the value list is too short, else it will be truncated if too long.
Writing a structure is supported as long as all attributes have Read/Write external access. The value for a struct should
be a dict of {<attribute name>: <value>}, nesting as needed. It is not recommended to write full structures
for builtin types, like TIMER, PID, etc.

Write a tag

>>> plc.write('dint_tag', 100)
Tag(tag='dint_tag', value=100, type='DINT', error=None)

Write many tags

>>> plc.write(('tag_1', 1), ('tag_2', True), ('tag_3', 1.234))
[Tag(tag="tag_1', value=1, type='INT', error=None), Tag(tag='tag_2', value=True, type=
—'BOOL', error=None), ...]

Write arrays

>>> plc.write('dint_array ', list(range(10))) # starts at index 0
Tag(tag='dint_array', value=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], type='DINT[10]', error=None)
>>> plc.write(('dint_array[10] ', [10, 11, 12])) # write 3 elements starting at index.
10

Tag(tag="dint_array[10]"', value=[10, 11, 12], type='DINT[3]', error=None)

Write structures

>>> plc.write('my_udt', {'attrl': 100, 'attr2': [1, 2, 3, 4]1})
Tag(tag="my_udt', value={'attrl': 100, 'attr2': [1, 2, 3, 4]}, type='MyUDT', error=None)

Check if all writes were successful

>>> tag_values = [('tagl', 10), ('tag2', True), ('tag3', 12.34)]
>>> results = plc.write(*tag_values)
>>> if all(results):
print('All tags written successfully')
All tags written successfully

String Tags

Strings are technically structures within the PLC, but are treated as atomic types in this library. There is no need to
handle the LEN and DATA attributes, the structure is converted to/from Python str objects transparently. Any structures
that contain only a DINT-LEN and a SINT[]-DATA attributes will be automatically treated as string tags. This allows
the builtin STRING types plus custom strings to be handled automatically. Strings that are longer than the plc tag will
be truncated when writing.

>>> plc.read('string_tag')

Tag(tag='string_tag', value='Hello World!', type='STRING', error=None)

>>> plc.write(('short_string tag', 'Test Write'))
Tag(tag="short_string_tag', value='Test Write', type='STRING20', error=None)

5.1. Contents 25

pycomma3, Release 1.2.14

Using SLCDriver

TODO

This document.

5.1.3 Examples

Basic Reading and Writing Tag Examples

Basic Reading

Reading a single tag returns a Tag object.

def read_single():
with LogixDriver('10.61.50.4/10') as plc:
return plc.read('DINT1")

>>> read_single()
Tag(tag='DINT1', value=20, type='DINT', error=None)

Reading multiple tags returns a list of Tag objects.

def read_multiple(Q):
tags = ['DINT1', 'SINT1', 'REAL1']
with LogixDriver('10.61.50.4/10"') as plc:
return plc.read(*tags)

>>> read_multiple()

[Tag(tag="DINT1', value=20, type='DINT', error=None), Tag(tag='SINT1l', value=5,
- type='SINT', error=None), Tag(tag='REAL1', value=100.0009994506836, type=

— 'REAL', error=None)]

An array is represented in a single Tag object, but the value attribute is a list.

def read_array(Q):
with LogixDriver('10.61.50.4/10"') as plc:
return plc.read('DINT_ARY1 D)

def read_array_slice():
with LogixDriver('10.61.50.4/10"') as plc:
return plc.read('DINT_ARY1[50] D)

>>> read_array()

Tag(tag='DINT_ARY1', value=[0, 1000, 2000, 3000, 4000], type='DINT[5]',.
—.error=None)

>>> read_array_slice()

Tag(tag="DINT_ARY1[50]', value=[50000, 51000, 52000, 53000, 54000], type=
—'DINT[5]"', error=None)

You can read strings just like a normal value, no need to handle the LEN and DATA attributes individually.

26 Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

def read_strings():
with LogixDriver('10.61.50.4/10') as plc:
return plc.read('STRING1', 'STRING_ARY1[2] D)

>>> read_strings()
[Tag(tag="STRINGl', value='A Test String', type='STRING', error=None), Tag(tag=
< "STRING_ARY1[2]"', value=['THIRD', 'FoUrTh'], type='STRING[2]', error=None)]

Structures can be read as a whole, assuming that no attributes have External Access set to None. Structure tags will be
a single Tag object, but the value attribute will be a dict of {attribute: value}.

def read_udt(Q):
with LogixDriver('10.61.50.4/10"') as plc:
return plc.read('SimpleUDT1_1")

def read_timer():
with LogixDriver('10.61.50.4/10') as plc:
return plc.read('TIMERL")

>>> read_udt()
Tag(tag='SimpleUDT1_1', value={'bool': True, 'sint': 100, 'int': -32768, 'dint
~': -1, 'real': 0.0}, type='SimpleUDT1', error=None)
>>> read_timer()
Tag(tag="TIMER1', value={'CTL': [False, False, False, False, False, False,.
—False, False, False, False, False,

False, False, False, False, False, False,.,
—False, False, False, False, False,

False, False, False, False, False, False,.
—False, True, True, False],

'"PRE': 30000, 'ACC': 30200, 'EN': False, 'TT': True,

—'DN': True}, type='TIMER', error=None)

Note: Most builtin data types appear to have a BOOL array (or DWORD) attribute called CTL that is not
shown in the Logix tag browser.

Basic Writing

Writing a single tag returns a single Tag object response.

def write_single():
with LogixDriver('10.61.50.4/10"') as plc:
return plc.write(('DINT2', 100_000_000))

>>> write_single()
Tag(tag="'DINT2', value=100000000, type='DINT', error=None)

Writing multiple tags will return a list of Tag objects.

5.1. Contents 27

pycomma3, Release 1.2.14

def write_multiple(Q):
with LogixDriver('10.61.50.4/10') as plc:
return plc.write(('REAL2', 25.2), ('STRING3', 'A test for writing to a.
—string. "))

>>> write_multiple()
[Tag(tag="REAL2', value=25.2, type='REAL', error=None), Tag(tag='STRING3',.
—value="A test for writing to a string.', type='STRING', error=None)]

Writing a whole structure is possible too. As with reading, all attributes are required to NOT have an External Access
of None. Also, when writing a structure your value must match the structure exactly and provide data for all attributes.
The value should be a list of values or a dict of attribute name and value, nesting as needed for arrays or other structures
with the target. This example shows a simple recipe UDT:

Attribute Data Type
Enabled BOOL
OpCodes DINT[10]
Targets REAL[10]
StepDescriptions | STRING[10]
TargetUnits STRINGS8[10]
Name STRING

def write_structure():
with LogixDriver('10.61.50.4/10') as plc:
recipe_data = {

'Enabled': True,

'OpCodes': [10, 11, 4, 20, 6, 20, 6, 30, 5, 0],

'Targets': [100, 500, 85, 5, 15, 10.5, 20, 0, 0, 0],

'StepDescriptions': ['Set Water Temperature',
'Heated Water',
'Start Agitator',
'Hand Add - Flavor Part 1',
'Timed Mix',
'Hand Add - Flavor Part 2',
'Timed Mix',
'Transfer to Storage Tank',
'Disable Agitator',
"1,

'TargetUnits': ['°F', 'lbs', '%', 'gal', 'min', 'lbs', 'min', y

'Name': 'Our Fictional Recipe',

plc.write(('Example_Recipe', recipe_data))

28 Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

Examples of Working with the Tag List

Data Types

For UDT/AOI or built-in structure data-types, information and definitions are stored in the data_types property. This
property allow you to query the PLC to determine what types of tags it may contain. For details on the contents of a
data type definition view Structure Definitions.

Print out the public attributes for all structure types in the PLC:

def find_attributes():
with LogixDriver('10.61.50.4/10"') as plc:
do nothing, we're just letting the plc initialize the tag list

for typ in plc.data_types:
print(f' {typ} attributes:

, plc.data_types[typ]['attributes'])

>>> find_attributes()

STRING attributes: ['LEN', 'DATA']

TIMER attributes: ['CTL', 'PRE', 'ACC', 'EN', 'TT', 'DN']

CONTROL attributes: ['CTL', 'LEN', 'POS', 'EN', 'EU', 'DN', 'EM', 'ER', 'UL',

~"IN', "FD']
DateTime attributes: ['Yr', 'Mo', 'Da', 'Hr', 'Min', 'Sec', 'uSec']
Tag List

Part of the requirement for reading/writing tags is knowing the tag definitions stored in the PLC so that user does not
need to provide any information about the tag besides it’s name. By default, the tag list is uploaded on creation of the
LogixDriver, for details reference the LogixDriver API.

Example showing how the tag list is stored:

def tag_list_equal(Q):
with LogixDriver('10.61.50.4/10"') as plc:
tag_list = plc.get_tag_list()
if {tag['tag_name']: tag for tag in tag_list} == plc.tags:
print('They are the same!')

with LogixDriver('10.61.50.4/10', init_tags=False) as plc2:
plc2.get_tag_list()

if plc.tags == plc2.tags:

print('Calling get_tag_list() does the same thing.')
else:

print('Calling get_tag_list() does NOT do the same.')

>>> tag_list_equal()
They are the same!
Calling get_tag_list() does the same thing.

5.1. Contents 29

pycomma3, Release 1.2.14

Filtering

There are multiple properties of tags that can be used to locate and filter down the tag list. For available properties,
reference Tag Structure. Examples below show some methods for filtering the tag list.

Finding all PID tags:

def find_pidsQ:
with LogixDriver('10.61.50.4/10') as plc:

PIDs are structures, the data_type attribute will be a dict with.,
—data type definition.

For tag types of 'atomic' the data type will a string, we need to skip.
—those first.

Then we can just look for tags whose data type name matches 'PID'

pid_tags = [
tag
for tag, _def in plc.tags.items()
if _def['data_type_name'] == 'PID'
]

print(pid_tags)

>>> find_pids(Q)
['FIC100_PID', 'TICI100_PID']

Generic Messaging

The LogixDriver.generic_message() works in a similar way to the MSG instruction in Logix. It allows the user
to perform messaging services not directly implemented in the library. It is also used internally to implement some of
the CIP services used by the library (Forward Open, get/set PLC time, etc).

Accessing Drive Parameters

While a drive may not be a PLC, we can use generic messaging to read parameters from it. The target drive is a
PowerFlex 525 and using this Rockwell KB Article we can get the appropriate parameters to read/write parameters
from the drive.

def read_pf525_parameter():
drive_path = '10.10.10.100/bp/1/enet/192.168.1.55"'

with CIPDriver(drive_path) as drive:
param = drive.generic_message(

service=Services.get_attribute_single,
class_code=b'\x93",
instance=41, # Parameter 41 = Accel Time
attribute=b'\x09"',
data_type=INT,
connected=False,
unconnected_send=True,
route_path=True,

(continues on next page)

30 Chapter 5. Python and OS Support

https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/566003/loc/en_US#__highlight

pycomm3, Release 1.2.14

(continued from previous page)

name="pf525_param'

)

print (param)

>>> read_pf525_parameter()
pf525_param, 500, None, None

def write_pf525_parameter():
drive_path = '10.10.10.100/bp/1/enet/192.168.1.55"'

with CIPDriver(drive_path) as drive:

drive.generic_message(
service=Services.set_attribute_single,
class_code=b"'\x93",
instance=41, # Parameter 41 = Accel Time
attribute=b'\x09"',
request_data=INT.encode(500), # = 5 seconds * 100
connected=False,
unconnected_send=True,
route_path=True,
name="pf525_param'

Reading Device Statuses
ENBT/EN2T OK LED Status

This message will get the current status of the OK LED from and ENBT or EN2T module.

def enbt_ok_led_status():
message_path = '10.10.10.100/bp/2"

with CIPDriver(message_path) as device:
data = device.generic_message(
service=Services.get_attribute_single,
class_code=b'\x01', # Values from RA Knowledgebase
instance=1, # Values from RA Knowledgebase
attribute=5, # Values from RA Knowledgebase
data_type=INT,
connected=False,
unconnected_send=True,
route_path=True,
name="'0OK LED Status'
)
The LED Status is returned as a binary representation on bits 4, 5,.
-6, and 7. The decimal equivalents are:
0 = Solid Red, 64 = Flashing Red, and 96 = Solid Green. The ENBT/
—EN2T do not display link lost through the OK LED.
statuses = {
0: 'solid red',

(continues on next page)

5.1. Contents 31

pycomma3, Release 1.2.14

(continued from previous page)

64: 'flashing red',
96: 'solid green'

}

print(statuses.get(data.value), 'unknown')

Link Status

This message will read the current link status for any ethernet module.

def link_status(Q):
message_path = '10.10.10.100/bp/2"

with CIPDriver(message_path) as device:
data = device.generic_message(
service=Services.get_attribute_single,
class_code=b'\xf6', # Values from RA Knowledgebase
instance=1, # For multiport devices, change to "2" for second.
for third port.
For CompactLogix, front port is "1" and back port.

—port, "3'

—1is "2".
attribute=2, # Values from RA Knowledgebase
data_type=INT,
connected=False,
unconnected_send=True,
route_path=True,
name="LinkStatus'
)
Prints the binary representation of the link status. The definition.,
—of the bits are:
Bit 0® - Link Status - 0 means inactive link (Link Lost), 1 means.
—active link.
Bit 1 - Half/Full Duplex - 0 means half duplex, 1 means full duplex
Bit 2 to 4 - Binary representation of auto-negotiation and speed.
—detection status:
0 = Auto-negotiation in progress
1 = Auto-negotiation and speed detection failed
2 = Auto-negotiation failed, speed detected
3 = Auto-negotiation successful and speed detected
4 = Manually forced speed and duplex
Bit 5 - Setting Requires Reset - if 1, a manual setting requires.
—resetting of the module
Bit 6 - Local Hardware Fault - 0 indicates no hardware faults, 1.
—indicates a fault detected.
print(bin(data.value))

R R R

32 Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

Stratix Switch Power Status

This message will read the current power status for both power inputs on a Stratix switch.

def stratix_power_status():

service=b'\x0e",
class_code=863,
instance=1,
attribute=8,
connected=False,

route_path=True,
data_type=INT,

)

message_path = '10.10.10.

unconnected_send=

100/bp/2/enet/192.168.1.1"

with CIPDriver(message_path) as device:
data = device.generic_message(

use decimal representation of hex class code

True,

name="Power Status'

Returns a binary representation of the power status. Bit 0O is PWR A,.
—Bit 1 is PWR B. If 1, power is applied. If 0, power is off.

pwr_a = 'on' if data.

pwr_b = 'on' if data.

print(£'PWR A: {pwr_a}, PWR B: {pwr_b}')

value & Ob_1 else 'off'
value & Ob_10 else 'off'

IP Configuration

Static/DHCP/BOOTP Status

This message will read the IP setting configuration type from an ethernet module.

def ip_config(Q):

service=b'\x0e"',

instance=1,
attribute=3,
connected=False,

route_path=True,
data_type=INT,
name="IP_config'

statuses = {
Ob_0000: 'static
0b_0001: 'BOOTP'
0b_0010: 'DHCP'

message_path = '10.10.10.

100/bp/2"

with CIPDriver (message_path) as plc: # L85
data = plc.generic_message(

class_code=b'\xf5",

unconnected_send=True,

(continues on next page)

5.1. Contents

33

pycomma3, Release 1.2.14

(continued from previous page)

}

ip_status = data.value & Ob_1111 # only need the first 4 bits
print(statuses.get(ip_status, 'unknown'))

Communication Module MAC Address

This message will read the MAC address of ethernet module where the current connection is opened.

def get_mac_address():
with CIPDriver('10.10.10.100"') as plc:
response = plc.generic_message(
service=Services.get_attribute_single,
class_code=ClassCode.ethernet_link,
instance=1,
attribute=3,
data_type=USINT[6],
connected=False

)
if response:

return ':'.join(f'{x:0>2x}' for x in response.value)
else:

print(f'error getting MAC address - {response.error}')

Upload EDS File

This example shows how to use generic messaging to upload and save an EDS file from a device.

from pycomm3 import (CIPDriver, Services, ClassCode, FileObjectServices,.,
—FileObjectInstances,

FileObjectInstanceAttributes, Struct, UDINT, USINT, n_
—bytes)
import itertools
import gzip
from pathlib import Path

SAVE_PATH = Path.home()

def upload_eds(Q):

e

Uploads the EDS and ICO files from the device and saves the files.
with CIPDriver('192.168.1.236"') as driver:
if initiate_transfer(driver):
file_data = upload_file(driver)
encoding = get_file_encoding(driver)

(continues on next page)

34 Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

(continued from previous page)

o

i

)

—bytes(-1,

)

if encoding == 'zlib':
in this case the file has both the eds and ico files in it
files = decompress_eds(file_data)

for filename, file_data in files.items():
file_path = SAVE_PATH / filename
file_path.write_bytes(file_data)

elif encoding == 'binary':
file_name = get_file_name(driver)
file_path = SAVE_PATH / file_name
file_path.write_bytes(file_data)
else:
print ('Unsupported Encoding')

else:

print('Failed to initiate transfer')

def initiate_transfer(driver):
Initiates the transfer with the device

resp = driver.generic_message(
service=FileObjectServices.initiate_upload,
class_code=ClassCode.file_object,
instance=FileObjectInstances.eds_file_and_icon,
route_path=True,
unconnected_send=True,
connected=False,
request_data=b'\xFF', # max transfer size
data_type=Struct (UDINT('FileSize'), USINT('TransferSize'))

return resp
def upload_file(driver):
contents = b'"'

for i in itertools.cycle(range(256)):
resp = driver.generic_message(

service=FileObjectServices.upload_transfer,
class_code=ClassCode.file_object,
instance=FileObjectInstances.eds_file_and_icon,

route_path=True,

unconnected_send=True,

connected=False,

request_data=USINT.encode(i),

data_type=Struct (USINT('TransferNumber'), USINT('PacketType'), n_
'FileData'))

(continues on next page)

5.1. Contents

35

pycomma3, Release 1.2.14

(continued from previous page)

if resp:
packet_type = resp.value['PacketType']
data = resp.value['FileData']

contents += data

CIP Vol 1 Section 5-42.4.5
- first packet

- middle packet

- last packet

- Abort transfer

- first & last packet
5-255 - Reserved

if packet_type not in (0, 1):
break

R R R W W W
AR W N RS

else:
print(f'failed response {resp}')
break

contents = contents[:-2] # strip off checksum
return contents

def get_file_encoding(driver):

i

get the encoding format for the eds file object

i

attr = FileObjectInstanceAttributes.file_encoding_format

resp = driver.generic_message(
service=Services.get_attribute_single,
class_code=ClassCode.file_object,
attribute=attr.attr_id,
instance=FileObjectInstances.eds_file_and_icon,
route_path=True,
unconnected_send=True,
connected=False,
data_type=attr.data_type,
)
_enc_code = resp.value if resp else None
EDS_ENCODINGS = {
0: 'binary',
1: 'zlib'
}
file_encoding = EDS_ENCODINGS.get(_enc_code, 'UNSUPPORTED ENCODING')
return file_encoding

def decompress_eds(contents):

i

extract the eds and ico files from the uploaded file

(continues on next page)

36 Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

(continued from previous page)

returns a dict of {file name: file contents}

i

GZ_MAGIC_BYTES = b'\x1f\x8b'

there is actually 2 files, the eds file and the icon
we need to split the file contents since gzip
only supports single files

end_filel = contents.find(GZ_MAGIC_BYTES, 2)

filel, file2 = contents[:end_filel], contents[end_filel:]
eds = gzip.decompress(filel)

ico = gzip.decompress(file2)

eds_name = filel[10:filel.find(b'\x00', 10)].decode()
ico_name = file2[10:file2.find(b'\x00', 10)].decode()

return {eds_name: eds, ico_name: ico}

def get_file_name(driver):

e

Get the filename of the eds file object

attr = FileObjectInstanceAttributes.file_name

resp = driver.generic_message(
service=Services.get_attribute_single,
class_code=ClassCode.file_object,
attribute=attr.attr_id,
instance=FileObjectInstances.eds_file_and_icon,
route_path=True,
unconnected_send=True,
connected=False,
data_type=attr.data_type

)

file_name = resp.value['FileName'][0] if resp else None
return file_name

if __name__ == '__main__

upload_eds()

5.1.4 API Reference

CIPDriver API

class pycomm3.CIPDriver (path, *args, **kwargs)

A base CIP driver for the SLCDriver and LogixDriver classes. Implements common CIP services like

(un)registering sessions, forward open/close, generic messaging, etc.

__init__(path, *args, **kwargs)

5.1. Contents

37

pycomma3, Release 1.2.14

property connected: bool

Read-Only Property to check whether or not a connection is open.

Return type
bool

Returns
True if a connection is open, False otherwise

property connection_size
CIP connection size, 4000 if using Extended Forward Open else 500

property socket_timeout

Socket open connection timeout, in seconds

classmethod list_identity(path)
Uses the Listldentity service to identify the target

Return type
Optional[Dict[str, Any]]

Returns
device identity if reply contains valid response else None

classmethod discover (broadcast _address='255.255.255.255")

Discovers available devices on the current network(s). Returns a list of the discovered devices Identity
Object (as dict).

Return type
List[Dict[str, Any]]

get_module_info(slot)
Get the Identity object for a given slot in the rack of the current connection

Return type
dict

open()
Creates a new Ethernet/IP socket connection to target device and registers a CIP session.

Returns
True if successful, False otherwise

close()
Closes the current connection and un-registers the session.

generic_message (service, class_code, instance, attribute=b", request_data=b"", data_type=None,
name="'generic', connected=True, unconnected_send=False, route_path=True, **kwargs)

Perform a generic CIP message. Similar to how MSG instructions work in Logix.
Parameters
» service (Union[int, bytes]) — service code for the request (single byte)
¢ class_code (Union[int, bytes]) — request object class ID

¢ instance (Union[int, bytes])—ID for an instance of the class If set with 0, request class
attributes.

e attribute (Union[int, bytes]) — (optional) attribute ID for the service/class/instance

¢ request_data (Any) — (optional) any additional data required for the request.

38

Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

e data_type (Union[Type[DataType], DataType, None]) —a DataType class that will be
used to decode the response, None to return just bytes

* name (str) —return Tag. tag value, arbitrary but can be used for tracking returned Tags

» connected (bool) — True if service required a CIP connection (forward open), False to
use UCMM

¢ unconnected_send (bool) — (Unconnected Only) wrap service in an UnconnectedSend
service

e route_path (Union[bool, Sequence[CIPSegment], bytes, str]) — (Unconnected
Only) True to use current connection route to destination, False to ignore, Or provide
a path string, list of segments to be encoded as a PADDED_EPATH, or an already encoded
path.

Return type
Tag

Returns
a Tag with the result of the request. (Tag.value for writes will be the request_data)

LogixDriver API

class pycomm3.LogixDriver (path, *args, init_tags=True, init_program_tags=True, **kwargs)
An Ethernet/IP Client driver for reading and writing tags in ControlLogix and CompactLogix PLCs.

__init__(path, *args, init_tags=True, init_program_tags=True, **kwargs)
Parameters
» path (str) — CIP path to intended target
The path may contain 3 forms:

— IP Address Only (10.20.30.100) - Use for a ControlLogix PLC is in slot O or if con-
necting to a CompactLogix or Micro800 PLC.

— IP Address/Slot (10.20.30.100/1) - (ControlLogix) if PLC is not in slot O

— CIP Routing Path (1.2.3.4/backplane/2/enet/6.7.8.9/backplane/0) - Use for
more complex routing.

Note: Both the IP Address and IP Address/Slot options are shortcuts, they will be replaced
with the CIP path automatically. The enet / backplane (or bp) segments are symbols for
the CIP routing port numbers and will be replaced with the correct value.

e init_tags (bool) —if True (default), uploads all controller-scoped tag definitions on con-
nect

e init_program_tags (bool) — if False, bypasses uploading program-scoped tags. set to
False if there are a lot of program tags and you aren’t using any of them to decrease tag
upload times.

Tip: Initialization of tags is required for the read() and write() to work. This is because they require
information about the data type and structure of the tags inside the controller. If opening multiple con-

5.1. Contents 39

pycomma3, Release 1.2.14

nections to the same controller, you may disable tag initialization in all but the first connection and set
plc2._tags = plcl.tags to prevent needing to upload the tag definitions multiple times.

open()
Creates a new Ethernet/IP socket connection to target device and registers a CIP session.

Returns
True if successful, False otherwise

property revision_major: int
Returns the major revision for the PLC or O if not available

Return type
int

property tags: dict
Read-only property to access all the tag definitions uploaded from the controller.

Return type
dict

property tags_json

Read-only property to access all the tag definitions uploaded from the controller. Filters out any non-JSON
serializable objects.

property data_types: dict
Read-only property for access to all data type definitions uploaded from the controller.

Return type
dict

property connected: bool

Read-Only Property to check whether or not a connection is open.

Return type
bool

Returns
True if a connection is open, False otherwise

property info: dict
Property containing a dict of all the information collected about the connected PLC.
Fields:
* vendor - name of hardware vendor, e.g. 'Rockwell Automation/Allen-Bradley'
 product_type - typically 'Programmable Logic Controller'
* product_code - code identifying the product type
* revision - dict of {‘major’: <major rev (int)>, ‘minor’: <minor rev (int)>}
e serial - hex string of PLC serial number, e.g. 'FFFFFFFF'
* product_name - string value for PLC device type, e.g. '1756-L83E/B'
* keyswitch - string value representing the current keyswitch position, e.g. 'REMOTE RUN'

* name - string value of the current PLC program name, e.g. 'PLCA’

The following fields are added from calling get_tag_Ilist()

40 Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

e programs - dict of all Programs in the PLC and their routines, {program: {'routines':

[routine, ...}...}
e tasks - dict of all Tasks in the PLC, {task: {'instance_id': ...}...}
e modules - dict of I/O modules in the PLC, {module: {'slots': {1: {'types': T['O,’
'I', 'C'1}, ...}, 'types':[...]1}...}
Return type
dict

property name: Optional[str]
Return type
Optional[str]

Returns
name of PLC program
get_plc_name()
Requests the name of the program running in the PLC. Uses KB 23341 for implementation.

Return type
str

Returns
the controller program name
get_plc_info()
Reads basic information from the controller, returns it and stores it in the info property.
Return type
dict
get_plc_time (fint="%A, %B %d, %Y %l:%M:%S%p")

Gets the current time of the PLC system clock. The value attribute will be a dict containing the time in
3 different forms, datetime is a Python datetime.datetime object, microseconds is the integer value epoch
time, and string is the datetime formatted using strftime and the fmt parameter.

Parameters
fmt (str) — format string for converting the time to a string

Return type
Tag

Returns
a Tag object with the current time
set_plc_time(microseconds=None)
Set the time of the PLC system clock.
Parameters

microseconds (Optional[int])— None to use client PC clock, else timestamp in microsec-
onds to set the PLC clock to

Return type
Tag

Returns
Tag with status of request

5.1.

Contents 41

https://rockwellautomation.custhelp.com/app/answers/answer_view/a_id/23341

pycomma3, Release 1.2.14

get_tag_list(program=None, cache=True)

Reads the tag list from the controller and the definition for each tag. Definitions include tag name, tag type
(atomic vs struct), data type (including nested definitions for structs), external access, dimensions defined
(0-3) for arrays and their length, etc.

Note: For program scoped tags the tag[‘tag_name’] will be 'Program: {program}.{tag_name}'. This
is so the tag list can be fed directly into the read function.

Parameters

* !

* program (Optional[str]) — scope to retrieve tag list, None for controller-only tags, '
for all tags, else name of program

 cache (bool) - store the retrieved list in the tags property. Disable if you wish to get tags
retrieved to not overwrite the currently cached definition. For instance if you're checking
tags in a single program but currently reading controller-scoped tags.

Return type
List[dict]

Returns
a list containing dicts for each tag definition collected

read(*rags)

Read the value of tag(s). Automatically will split tags into multiple requests by tracking the request and
response size. Will use the multi-service request to group many tags into a single packet and also will
automatically use fragmented read requests if the response size will not fit in a single packet. Supports
arrays (specify element count in using curly braces (array{10}). Also supports full structure reading (when
possible), return value will be a dict of {attribute name: value}.

Parameters
tags (str) — one or many tags to read

Return type
Union|[Tag, List[Tag]]

Returns
a single or list of Tag objects

write (*tags_values)

Write to tag(s). Automatically will split tags into multiple requests by tracking the request and response
size. Will use the multi-service request to group many tags into a single packet and also will automatically
use fragmented read requests if the response size will not fit in a single packet. Supports arrays (specify
element count in using curly braces (array{10}). Also supports full structure writing (when possible), value
must be a sequence of values or a dict of {attribute: value} matching the exact structure of the destination

tag.

Parameters
tags_values (Union[str, int, float, bool, List[Union[int, float, bool, str]],
Dict[str, Union[int, float, bool, str, List[Union[int, float, bool, str]],
Dict[str, ForwardRef]]], Tuple[str, Union[int, float, bool, str, List[Union[int,
float, bool, str]], Dict[str, Union[int, float, bool, str, List[Union[int, float,
bool, str]], Dict[str, ForwardRef]]]]]]) — (tag, value) tuple or sequence of tag and value
tuples [(tag, value), ...]

Return type

Union[Tag, List[Tag]]

42 Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

Returns
a single or list of Tag objects.

get_tag_info(tag_name)
Returns the tag information for a tag collected during the tag list upload. Can be a base tag or an attribute.

Parameters
tag_name (str)— name of tag to get info for

Return type
Optional[dict]

Returns
a dict of the tag’s definition

SLCDriver API

class pycomm3.SLCDriver (path, *args, **kwargs)
An Ethernet/IP Client driver for reading and writing of data files in SLC or MicroLogix PLCs.
read(*addresses)

Reads data file addresses. To read multiple words add the word count to the address using curly braces, e.g.
N120:10{10}.

Does not track request/response size like the CLXDriver.

Parameters
addresses (str) — one or many data file addresses to read

Return type
Union[Tag, List[Tag]]

Returns
a single or list of Tag objects

write(*address_values)

Write values to data file addresses. To write to multiple words in a file use curly braces in the address to
indicate the number of words, then set the value to a list of values to write e.g. ('N120:10{10}", [1,

2, ...D.
Does not track request/response size like the CLXDriver.

Parameters
address_values (Tuple[str, Union[int, float, bool, List[Union[int, float, bool,
str]]]]) — one or many 2-element tuples of (address, value)

Return type
Union[Tag, List[Tag]]

Returns
a single or list of Tag objects

5.1. Contents 43

pycomma3, Release 1.2.14

Data Types

class pycomm3.cip.data_types.DataType (name=None)

Base class to represent a CIP data type. Instances of a type are only used when defining the members of a
structure.

Each type class provides encode / decode class methods. If overriding them, they must catch any unhandled
exception and raise a DataError from it. For decode, BufferEmptyError should be reraised immediately
without modification. The buffer empty error is needed for decoding arrays of unknown length. Typically for
custom types, overriding the private _encode/_decode methods are sufficient. The private methods do not need
to do any exception handling if using the base public methods. For _decode use the private _stream_read
method instead of stream.read, so that BufferEmptyError exceptions are raised appropriately.

classmethod encode (value)
Serializes a Python object value to bytes.

Note: Any subclass overriding this method must catch any exception and re-raise a DataError

Return type
bytes

classmethod decode (buffer)
Deserializes a Python object from the buffer of bytes

Note: Any subclass overriding this method must catch any exception and re-raise as a DataError. Except
BufferEmptyErrors they must be re-raised as such, array decoding relies on this.

Return type
Any

class pycomm3.cip.data_types.ElementaryDataType (name=None)

Type that represents a single primitive value in CIP.
code: int =0

CIP data type identifier
size: int =0

size of type in bytes

class pycomm3.cip.data_types.BOOL (name=None)

A boolean value, decodes 0x00 and False and True otherwise. True encoded as OxFF and False as 0x00
code: int = 193

0xCl1
size: int =1

size of type in bytes

class pycomm3.cip.data_types.SINT (name=None)

Signed 8-bit integer
code: int = 194
0xC2

44

Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

size: int =1
size of type in bytes
class pycomm3.cip.data_types
Signed 16-bit integer
code: int = 195
0xC3
size: int =2
size of type in bytes
class pycomm3.cip.data_types
Signed 32-bit integer
code: int = 196
0xC4
size: int =14
size of type in bytes
class pycomm3.cip.data_types
Signed 64-bit integer
code: int = 197
0xC5
size: int =8
size of type in bytes
class pycomm3.cip.data_types
Unsigned 8-bit integer
code: int = 198
0xC6
size: int =1
size of type in bytes
class pycomm3.cip.data_types
Unsigned 16-bit integer
code: int = 199
0xC7
size: int = 2
size of type in bytes
class pycomm3.cip.data_types
Unsigned 32-bit integer
code: int = 200
0xC8
size: int =14
size of type in bytes

. INT (name=None)

.DINT (name=None)

.LINT (name=None)

.USINT (name=None)

.UINT (name=None)

.UDINT (name=None)

5.1. Contents

45

pycomma3, Release 1.2.14

class pycomm3.cip.data_types.ULINT (name=None)
Unsigned 64-bit integer
code: int = 201
0xC9
size: int = 8
size of type in bytes
class pycomm3.cip.data_types.REAL (name=None)
32-bit floating point
code: int = 202
0xCA
size: int = 4
size of type in bytes
class pycomm3.cip.data_types.LREAL (name=None)
64-bit floating point
code: int = 203
0xCB
size: int = 8
size of type in bytes
class pycomm3.cip.data_types.STIME (name=None)
Synchronous time information
code: int = 204
0xCC
class pycomm3.cip.data_types.DATE (name=None)
Date information
code: int = 205
0xCD
class pycomm3.cip.data_types.TIME_OF_DAY (name=None)
Time of day
code: int = 206
0xCE
class pycomm3.cip.data_types.DATE_AND_TIME (name=None)
Date and time of day
code: int = 207
0xCF
size: int = 8
size of type in bytes

classmethod encode(time, date, *args, **kwargs)
Serializes a Python object value to bytes.

Note: Any subclass overriding this method must catch any exception and re-raise a DataError

46 Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

Return type
bytes

class pycomm3.cip.data_types.StringDataType (name=None)
Base class for any string type

len_type = None
data type of the string length
encoding = 'iso-8859-1'
encoding of string data

class pycomm3.cip.data_types.LOGIX_STRING(name=None)
Character string, 1-byte per character, 4-byte length

len_type
alias of UDINT

class pycomm3.cip.data_types.STRING(name=None)
Character string, 1-byte per character, 2-byte length

code: int = 208
0xDO

len_type
alias of UINT

class pycomm3.cip.data_types.BytesDataType (name=None)
Base type for placeholder bytes.

pycomm3.cip.data_types.n_bytes(count, name="")

Create an instance of a byte string of count length. Setting count to -1 will consume the entire remaining

buffer.

class pycomm3.cip.data_types.BitArrayType (name=None)
Array of bits (Python bools) for host_type integer value

class pycomm3.cip.data_types.BYTE (name=None)
bit string - 8-bits
code: int = 209
0xD1
size: int =1
size of type in bytes

host_type
alias of USINT

class pycomm3.cip.data_types.WORD (name=None)
bit string - 16-bits
code: int = 210
0xD2
size: int = 2
size of type in bytes

5.1. Contents

47

pycomma3, Release 1.2.14

host_type
alias of UINT
class pycomm3.cip.data_types.DWORD (name=None)
bit string - 32-bits
code: int = 211
0xD3
size: int =14
size of type in bytes
host_type
alias of UDINT
class pycomm3.cip.data_types.LWORD (name=None)
bit string - 64-bits
code: int = 212
0xD4
size: int =8
size of type in bytes
host_type
alias of ULINT
class pycomm3.cip.data_types.STRING2 (name=None)
character string, 2-bytes per character
code: int = 213
0xD5
len_type
alias of UINT
encoding = 'utf-16-le’'
encoding of string data
class pycomm3.cip.data_types.FTIME (name=None)
duration - high resolution
code: int = 214
0xD6
class pycomm3.cip.data_types.LTIME (name=None)
duration - long
code: int = 215
0xD7
class pycomm3.cip.data_types.ITIME (name=None)
duration - short
code: int = 216
0xD8

48

Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

class pycomm3.cip.data_types.STRINGN (name=None)
character string, n-bytes per character
code: int = 217
0xD9

classmethod encode (value, char_size=1)
Serializes a Python object value to bytes.

Note: Any subclass overriding this method must catch any exception and re-raise a DataError

Return type
bytes

class pycomm3.cip.data_types.SHORT_STRING(name=None)
character string, 1-byte per character, 1-byte length
code: int = 218
0xDA
len_type
alias of USINT
class pycomm3.cip.data_types.TIME (name=None)
duration - milliseconds
code: int = 219
0xDB
class pycomm3.cip.data_types.EPATH(name=None)
CIP path segments
code: int = 220
0xDC

classmethod encode (segments, length=False, pad_length=False)
Serializes a Python object value to bytes.

Note: Any subclass overriding this method must catch any exception and re-raise a DataError

Return type
bytes

classmethod decode (buffer)
Deserializes a Python object from the buffer of bytes

Note: Any subclass overriding this method must catch any exception and re-raise as a DataError. Except
BufferEmptyErrors they must be re-raised as such, array decoding relies on this.

Return type
Sequence[CIPSegment]

5.1. Contents 49

pycomma3, Release 1.2.14

class pycomm3.cip.data_types.PACKED_EPATH(name=None)
class pycomm3.cip.data_types.PADDED_EPATH(name=None)
class pycomm3.cip.data_types.ENGUNIT (name=None)
engineering units
code: int = 221
0xDD
class pycomm3.cip.data_types.STRINGI (name=None)

international character string
code: int = 222
0xDE

classmethod encode(*strings)
Encodes strings to bytes

Return type
bytes

classmethod decode (buffer)
Deserializes a Python object from the buffer of bytes

Note: Any subclass overriding this method must catch any exception and re-raise as a DataError. Except
BufferEmptyErrors they must be re-raised as such, array decoding relies on this.

Return type
Tuple[Sequence[str], Sequence[str], Sequence[int]]

class pycomm3.cip.data_types.DerivedDataType (name=None)
Base type for types composed of ElementaryDataType

class pycomm3.cip.data_types.ArrayType (name=None)
Base type for an array

class pycomm3.cip.data_types.StructType (name=None)
Base type for a structure

class pycomm3.cip.data_types.CIPSegment (name=None)
Base type for a CIP path segment

Segment Type Segment Format
7]6 |5 4 [3 J2 [1 JoO

classmethod encode (segment, padded=False)
Encodes an instance of a CIPSegment to bytes

Return type
bytes

50 Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

classmethod decode (buffer)

Attention: Not Implemented

Return type
Any

class pycomm3.cip.data_types.PortSegment (port, link_address, name="")
Port segment of a CIP path.

Segment Type Extended Link Addr | Port Identifier

7]6 |5 4 3]2 J1 0
port_segments = {'backplane': 1, 'bp': 1, 'cnet': 2, 'dh485-a': 2, 'dh485-b':
3, 'dhrio-a': 2, 'dhrio-b': 3, 'dnet': 2, 'enet': 2}

available port names for use in a CIP path

class pycomm3.cip.data_types.LogicalSegment (logical_value, logical_type, *args, **kwargs)
Logical segment of a CIP path

Segment Type Logical Type Logical Format
7 \ 6 \ 5 4 \ 3 \ 2 1 \ 0
logical_types = {'attribute_id': 16, 'class_id': 0, 'connection_point': 12,
'instance_id': 4, 'member_id': 8, 'service_id': 24, 'special': 20}
available logical types
class pycomm3.cip.data_types.NetworkSegment (name=None)
class pycomm3.cip.data_types.SymbolicSegment (name=None)
class pycomm3.cip.data_types.DataSegment (data, name="")
Segment Type Segment Sub-Type
7 \ 6 \ 5 4 \ 3 \ 2 \ 1 \ 0
class pycomm3.cip.data_types.ConstructedDataTypeSegment (name=None)
class pycomm3.cip.data_types.ElementaryDataTypeSegment (name=None)

class pycomm3.cip

.data_types.DataTypes

Lookup table/map of elementary data types. Reverse lookup is by CIP code for data type.

bool

alias of BOOL
sint

alias of SINT
int

alias of INT

5.1. Contents

51

pycomma3, Release 1.2.14

dint

alias of DINT
lint

alias of LINT
usint

alias of USINT
uint

alias of UINT

udint
alias of UDINT

ulint
alias of ULINT

real
alias of REAL

1real
alias of LREAL

stime
alias of STIME

date

alias of DATE
time_of_day

alias of TIME_OF_DAY
date_and_time

alias of DATE_AND_TIME
logix_string

alias of LOGIX_STRING
string

alias of STRING
byte

alias of BYTE

word
alias of WORD

dword
alias of DWORD

1lword

alias of LWORD
string2

alias of STRINGZ2

ftime
alias of FTIME

52

Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

1time
alias of LTIME

itime
alias of ITIME

stringn
alias of STRINGN

short_string

alias of SHORT_STRING

time
alias of TIME
padded_epath

alias of PADDED_EPATH

packed_epath

alias of PACKED_EPATH

engunit
alias of ENGUNIT

stringi
alias of STRINGI

Custom Types

class pycomm3.custom_types.IPAddress (name=None)
class pycomm3.custom_types.ModuleIdentityObject (name=None)
class pycomm3.custom_types.ListIdentityObject (name=None)

pycomm3.custom_types.StructTemplateAttributes

alias of Struct

pycomm3.custom_types.FixedSizeString(size_, len_type_=UDINT)

Creates a custom string tag type

class pycomm3.custom_types.Revision(name=None)

5.1.5 CIP Reference

Documented CIP service and class codes are available in enum-like classes that can be imported for use, mostly useful
for generic messaging. The following classes may be imported directly from the pycomm3 package.

5.1. Contents

53

pycomma3, Release 1.2.14

Ethernet/IP Encapsulation Commands

class EncapsulationCommands (EnumlMap) :

nop = b"\x00\x00"

list_targets = b"\x01\x00"
list_services = b"\x04\x00"
list_identity = b"\x63\x00"
list_interfaces = b"\x64\x00"
register_session = b"\x65\x00"
unregister_session = b"\x66\x00"
send_rr_data = b"\x6F\x00"
send_unit_data = b"\x70\x00"

CIP Services and Class Codes

class Services(EnumMap) :

Common CIP Services
get_attributes_all = b"\x01"
set_attributes_all = b"\x02"
get_attribute_list = b"\x03"
set_attribute_list = b"\x04"
reset = b"\x05"

start = b"\x06"

stop = b"\x07"

create = b"\x08"

delete = b"\x09"
multiple_service_request = b"\x0A"
apply_attributes = b"\x0D"
get_attribute_single = b"\xOE"
set_attribute_single = b"\x10"
find_next_object_instance = b"\x11"
error_response = b"\x14"
restore = b"\x15"

save = b"\x16"

nop = b"\x17"

get_member = b"\x18"
set_member = b"\x19"
insert_member = b"\x1A"
remove_member = b"\x1B"
group_sync = b"\x1C"

Rockwell Custom Services

read_tag = b"\x4C"
read_tag_fragmented = b"\x52"
write_tag = b"\x4D"
write_tag_fragmented = b"\x53"
read_modify_write = b"\x4E"
get_instance_attribute_list = b"\x55"

@classmethod

(continues on next page)

54

Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

(continued from previous page)

def from_reply(cls, reply_service):

i

Get service from reply service code

e

val = cls.get(USINT.encode(USINT.decode(reply_service) - 128))
return val

class ClassCode (EnumMap) :
identity_object = b"\x01"
message_router = b"\x02"
device_net = b"\x03"
assembly = b"\x04"
connection = b"\x05"
connection_manager = b"\x06"
register = b"\x07"
discrete_input = b"\x08"
discrete_output = b"\x09"
analog_input = b"\x0A"
analog_output = b"\x0B"
presence_sensing = b"\x0E"
parameter = b"\xOF"

parameter_group = b"\x10"

group = b"\x12"
discrete_input_group = b"\x1D"
discrete_output_group = b"\x1E"
discrete_group = b"\x1F"

analog_input_group = b"\x20"
analog_output_group = b"\x21"
analog_group = b"\x22"
position_sensor = b"\x23"
position_controller_supervisor = b"\x24"
position_controller = b"\x25"
block_sequencer = b"\x26"
command_block = b"\x27"
motor_data = b"\x28"
control_supervisor = b"\x29"
ac_dc_drive = b"\x2A"
acknowledge_handler = b"\x2B"
overload = b"\x2C"

softstart = b"\x2D"

selection = b"\x2E"

s_device_supervisor = b"\x30"
s_analog_sensor = b"\x31"
s_analog_actuator = b"\x32"
s_single_stage_controller = b"\x33"
s_gas_calibration = b"\x34"
trip_point = b"\x35"

file_object = b"\x37"
s_partial_pressure = b"\x38"

(continues on next page)

5.1. Contents 55

pycomma3, Release 1.2.14

(continued from previous page)

safety_supervisor = b"\x39"
safety_validator = b"\x3A"
safety_discrete_output_point = b"\x3B"
safety_discrete_output_group = b"\x3C"
safety_discrete_input_point = b"\x3D"
safety_discrete_input_group = b"\x3E"
safety_dual_channel_output = b"\x3F"

s_sensor_calibration = b"\x40"
event_log = b"\x41"
motion_axis = b"\x42"
time_sync = b'"\x43"

modbus = b"\x44"
modbus_serial_link = b"\x46"

symbol_object = b"\x6b"
template_object = b"\x6c"
program_name = b"\x64" # Rockwell KB# 23341

wall_clock_time = b"\x8b" # Micro800 CIP client messaging quick start

controlnet = b"\xFO"
controlnet_keeper = b"\xF1"
controlnet_scheduling = b"\xF2"
connection_configuration = b"\xF3"
port = b"\xF4"

tcp_ip_interface = b"\xF5"
ethernet_link = b"\xF6"
componet_link = b"\xF7"
componet_repeater = b"\xF8"

class CommonClassAttributes(EnumMap) :
revision = Attribute(l, UINT("revision"))
max_instance = Attribute(2, UINT("max_instance"))
number_of_instances = Attribute(3, UINT('number_of_instances"))
optional_attribute_list = Attribute(4, UINT[UINT])
optional_service_list = Attribute(5, UINT[UINT])
max_id_number_class_attributes = Attribute(6, UINT("max_id_class_attrs™))
max_id_number_instance_attributes = Attribute(7, UINT("max_id_instance_attrs"))

Identity Object

class IdentityObjectInstanceAttributes(EnumMap) :
vendor_id = Attribute(l, UINT("vendor_id™))
device_type = Attribute(2, UINT('device_type™))
product_code = Attribute(3, UINT("product_code"))
revision = Attribute(4, Struct(USINT("major"), USINT('minor")))
status = Attribute(5, WORD("status"))
serial_number = Attribute(6, UDINT("serial_number"))
product_name = Attribute(7, SHORT_STRING('product_name"))

56 Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

Connection Manager Object

class ConnectionManagerServices(EnumMap) :
forward_close = b"\x4E"
unconnected_send = b"\x52"
forward_open = b"\x54"
get_connection_data = b"\x56"
search_connection_data = b"\x57"
get_connection_owner = b"\x5A"
large_forward_open = b"\x5B"

class ConnectionManagerInstances(EnumMap) :
open_request = b"\x01"
open_format_rejected = b"\x02"
open_resource_rejected = b"\x03"
open_other_rejected = b"\x04"
close_request = b"\x05"
close_format_request = b"\x06"
close_other_request = b"\x07"
connection_timeout = b"\x08"

File Object

class FileObjectServices(EnumMap) :
initiate_upload = b"\x4B"
initiate_download = b"\x4C"
initiate_partial_read = b"\x4D"
initiate_partial_write = b"\x4E"
upload_transfer = b"\x4F"
download_transfer = b"\x50"
clear_file = b"\x51"

class FileObjectClassAttributes (EnumMap) :
directory = Attribute(
32,
Struct (UINT("instance_number"), STRINGI("instance_name'), STRINGI("file_name")),
) # array of struct, len in attr 3

class FileObjectInstanceAttributes(EnumMap) :
state = Attribute(l, USINT("state'))
instance_name = Attribute(2, STRINGI("instance_name'))
instance_format_version = Attribute(3, UINT("instance_format_version'"))
file_name = Attribute(4, STRINGI("file_name"))
file_revision = Attribute(5, Struct(USINT("major"), USINT('minor")))
file_size = Attribute(6, UDINT('file_size™))
file_checksum = Attribute(7, INT("file_checksum™))
invocation_method = Attribute(8, USINT("invocation_method"))
file_save_params = Attribute(9, BYTE('"file_save_params"))
file_type = Attribute(10, USINT("file_type"))
file_encoding_format = Attribute(l1l, USINT("file_encoding_format"))

5.1. Contents 57

pycomma3, Release 1.2.14

class FileObjectInstances(EnumMap) :
eds_file_and_icon = 0xC8
related_eds_files_and_icons = 0xC9

5.1.6 Contributing

Contributing to pycomm3

This document aims to provide a brief guide on how to contribute to pycomm3.

Who can contribute?

Anyone! Contributions from any user are welcome. Contributions aren’t limited to changing code. Filing bug reports,
asking questions, adding examples or documentation are all ways to contribute. New users may find it helpful to start
with improving documentation, type hinting, or tests.

Asking a question

Questions can be submitted as either an issue or a discussion post. A general question not directly related to the code
or one that may be beneficial to other users would be most appropriate in the discussions area. One that is about a
specific feature or could turn into a feature request or bug report would be more appropriate as an issue. If submitting
a question as an issue, please use the guestion template.

Submitting an Issue

No code is perfect, pycomm3 is no different and user submitted issues aid in improving the quality of this library. Before
submitting an issue, check to see if someone has already submitted one before so we can avoid duplicate issues.

Bug Reports

To submit a bug report, please create an issue using the Bug Report template. Please include as much information as
possible relating to the bug. The more detailed the bug report, the easier and faster it will be to resolve. Some details
to include:

* The version of pycomm3 (easily found with the pip show pycomm3 command)

* Model/Firmware/etc if the issue is related to a specific device or firmware version

* Logs (see the documentation to configure)
— A helper method is provided to simplify logging configs, including logging to a file
— Using the LOG_VERBOSE level is the most helpful

» Sample code that will reproduce the bug

58 Chapter 5. Python and OS Support

https://pycomm3.dev/getting_started.html#logging

pycomma3, Release 1.2.14

Feature Requests

For feature requests or enhancements, please create an issue using the Feature Request template. New features could
be things like:

* A missing feature from a similar library

— e.g. Library X has a feature Y, would it be possible to add Y functionality to pycomm3?
¢ Change or modification to the API

— Ifit’s a breaking change be sure to include why the new functionality is better than the current
* Enhancing a current feature

* Removing an old/broken/unsupported feature

Submitting Changes

Submitting code or documentation changes is another way to contribute. All contributions should be made in the form
of a pull request. You should fork this repository and clone it to your machine. All work is done in the develop branch
first before merging to master. All pull requests should target the develop branch. This is because some of the tests
are specific to a demo PLC. Once changes are completed in develop and all tests are passing, develop will be merged
into master and a new release created and available on PyPI.

Some requirements for code changes to be accepted include:
¢ code should be pythonic and follow PEPS, PEP20, and other Python best-practices or common conventions
¢ public methods should have docstrings which will be included in the documentation
* comments and docstrings should explain why and how the code works, not merely what it is doing
* type hinting should be used as much as possible, all public methods need to have hints
* new functionality should have tests
* run the user tests and verify there are no issues
* avoid 3rd party dependencies, code should only require the Python standard library
* avoid breaking changes, unless adequately justified
¢ do not update the library version
Some suggested contributions include:
* type hinting
— all public methods are type hinted, but many internal methods are missing them
* tests
— new tests are always welcome, particularly offline tests or any methods missing tests
* examples
— example scripts showing how to use this library or any of it’s features

— you may include just the example script if you’re not comfortable with also updating the docs to include it

5.1. Contents 59

pycomma3, Release 1.2.14

New Feature or an Example?

It can be tough to decide whether functionality should be added to the library or shown as an example. New features
should apply to generally to almost all devices for a driver or implement new functionality that cannot be done externally.
If submitting an example, please include name/username/email/etc in a comment/docstring if you wish to be credited.

Here are a couple examples of changes and why they were added either as a feature or example:
[Feature] Add support for writing structures with a dictionary for the value:

* Cannot be done without modifying internal methods

* New functionality not yet implemented

 Improves user experience

— user can read a struct, change one value, and write it back without changing the data structure

[Example] Add support for reading/writing Powerflex drive parameters:

* Implemented using the generic_message method

* Does not apply to a wide arrange of device types

* Not a PLC, so doesn’t fit in the Logix or SLC drivers

* Too specific for the CIPDriver, but not enough to create a new driver
Some questions to ask yourself when deciding between a feature or an example:

¢ Is this new functionality or a new use of current functionality? Former may be a feature, latter could be an
example

 Can this be done using already available features? Yes, then maybe an example
* Does this apply to a wide arrange of devices? Yes, then maybe a feature
 Will this require internal changes to existing functionality? Yes, then maybe a feature

e Is this useful? Either should be useful

5.1.7 Release History

1.2.14

 add support for hostnames in connection path

1.2.13

CIPDriver

* add ability to specify broadcast address for discover() #292 @tIf30

60 Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

1.2.11

» update vendor id list #257 @PhilippHaefele
1.2.10
CIPDriver

* support port customization in the connection path

e support comma delimiters in the connection path

1.2.9
SLCDriver
e added get_datalog_queue method @ddeckerCPF
1.2.8
LogixDriver
* fixed issue reading single elements >32 from BOOL arrays
1.2.7
LogixDriver
* fixed issue with program-scoped tags in get_tag_info #216
1.2.6
LogixDriver
* fixed issue handling BOOLs in some predefined types #197
1.2.5
LogixDriver

* fixed issue parsing struct definitions for predefined types for v32+ #186

5.1. Contents

61

pycomma3, Release 1.2.14

1.2.4

LogixDriver
* fixed issue for BOOL members inside structures that was introduced as part of 1.2.3 #182
1.2.3
LogixDriver
* fixed issue with bit-level access to integers inside nested structs #170
1.2.2
CIPDriver

» added support for string CIP paths in generic_message for route_path
* fixed bug where errors during discovery prevent any results from being returned

* fixed issue where get_module_info would always use first hop in path instead of the last

LogixDriver

* fixed issue with multi-request message size tracking being off by 2 bytes

* fixed issue with AOI structure handling with > 8 BOOL members being mapped to types larger than a USINT
(SISAutomationIMA)

1.2.1

 added ability to configure custom logger via the configure_default_logger function

1.2.0

* fixed issue with logging configuration
¢ formatted project with black

* misc. documentation updates

LogixDriver

* fixed issue with writing a tag multiple times failing after the first write

* added tags_json property

62 Chapter 5. Python and OS Support

pycomma3, Release 1.2.14

SLCDriver

* fixed issue with parsing IO addresses

* improved address parsing speed by pre-compiling regex

1141

LogixDriver

* fixed read/write errors by preventing program-scoped tags from using instance ids in the request

1.1.0

LogixDriver

* fixed bugs in handling of built-in types (TIMER, CONTROL, etc)
* fixed bugs in structure tag handling when padding exists between attributes
* changed the meaning of the element count for BOOL arrays

— Previously, the {#} referred to the underlying DWORD elements of the BOOL array. A BOOL[64] array
is actually a DWORD[2] array, so array{1} translated to BOOL elements 0-31 or the first DWORD
element. Now, the {#} refers to the number of BOOL elements. So array{1} is only a single BOOL
element and array{32} would be the 0-31 BOOL elements.

— Refer to the documentation for limitations on writing.

1.0.1

 Fixed incorrect/no error in response Tag for some failed requests in a multi-request

* Minor refactor to status and extended status parsing

1.0.0

¢ New type system to replace the Pack and Unpack helper classes
— New types represent any CIP type or object and allow encoding and decoding of values
— Allows users to create their own custom types

— [Breaking] generic_message replaced the data_format argument with data_type, see docu-
mentation for details.

¢ Added a new discover () method for finding Ethernet/IP devices on the local network
¢ Added a configure_default_logger method for simple logging setup
— Packet contents are now logged using a custom VERBOSE level
 Internal package structure changed.
* Lots of refactoring, decoupling, etc

* Increased test coverage

5.1. Contents 63

https://docs.pycomm3.dev/en/latest/usage/logixdriver.html#bool-arrays

pycomma3, Release 1.2.14

¢ New and improved documentation

— Still a work-in-progress

Logix Driver

* Upload of program-scoped tags is now enabled by default

— Use init_program_tags=False in initializer for to upload controller-scoped only tags
* Removed the init_info and micro800 init args and the use_instance_ids property

— These have all been automatic for awhile now, but were left for backwards compatibility

— If you need to customize this behavior, override the _initialize_driver method

64 Chapter 5. Python and OS Support

PYTHON MODULE INDEX

P

pycomm3.cip.data_types, 44
pycomm3.custom_types, 53

65

pycomma3, Release 1.2.14

66 Python Module Index

Symbols

__bool__Q (pycomm3.Tag method), 13
__init__Q (pycomm3.CIPDriver method), 37
__init__Q (pycomm3.LogixDriver method), 39

A

ArrayType (class in pycomm3.cip.data_types), 50

B

BitArrayType (class in pycomm3.cip.data_types), 47
BOOL (class in pycomm3.cip.data_types), 44

bool (pycomm3.cip.data_types.DataTypes attribute), 51
BYTE (class in pycomm3.cip.data_types), 47

byte (pycomm3.cip.data_types.DataTypes attribute), 52
BytesDataType (class in pycomm3.cip.data_types), 47

C

CIPDriver (class in pycomm3), 37

CIPSegment (class in pycomm3.cip.data_types), 50

close() (pycomm3.CIPDriver method), 38

code (pycomm3.cip.data_types.BOOL attribute), 44

code (pycomm3.cip.data_types.BYTE attribute), 47

code (pycomm3.cip.data_types.DATE attribute), 46

code (pycomm3.cip.data_types.DATE_AND_TIME at-
tribute), 46

code (pycomm3.cip.data_types.DINT attribute), 45

code (pycomm3.cip.data_types.DWORD attribute), 48

code (pycomm3.cip.data_types.ElementaryDataType at-
tribute), 44

code (pycomm3.cip.data_types. ENGUNIT attribute), 50

code (pycomm3.cip.data_types.EPATH attribute), 49

code (pycomm3.cip.data_types.FTIME attribute), 48

code (pycomm3.cip.data_types.INT attribute), 45

code (pycomm3.cip.data_types.ITIME attribute), 48

code (pycomm3.cip.data_types.LINT attribute), 45

code (pycomm3.cip.data_types.LREAL attribute), 46

code (pycomm3.cip.data_types.LTIME attribute), 48

code (pycomm3.cip.data_types.LWORD attribute), 48

code (pycomm3.cip.data_types.REAL attribute), 46

code (pycomm3.cip.data_types.SHORT_STRING at-
tribute), 49

INDEX

code (pycomm3.cip.data_types.SINT attribute), 44
code (pycomm3.cip.data_types.STIME attribute), 46
code (pycomm3.cip.data_types.STRING attribute), 47
code (pycomm3.cip.data_types.STRING?2 attribute), 48
code (pycomm3.cip.data_types.STRINGI attribute), 50
code (pycomm3.cip.data_types.STRINGN attribute), 49
code (pycomm3.cip.data_types. TIME attribute), 49
code (pycomm3.cip.data_types.TIME_OF_DAY at-
tribute), 46
code (pycomm3.cip.data_types.UDINT attribute), 45
code (pycomm3.cip.data_types.UINT attribute), 45
code (pycomm3.cip.data_types.ULINT attribute), 46
code (pycomm3.cip.data_types.USINT attribute), 45
code (pycomm3.cip.data_types.WORD attribute), 47
connected (pycomm3.CIPDriver property), 37
connected (pycomm3.LogixDriver property), 40
connection_size (pycomm3.CIPDriver property), 38
ConstructedDataTypeSegment (class in py-
comm3.cip.data_types), 51

D

data_types (pycomm3.LogixDriver property), 40

DataSegment (class in pycomm3.cip.data_types), 51

DataType (class in pycomm3.cip.data_types), 44

DataTypes (class in pycomm3.cip.data_types), 51

DATE (class in pycomm3.cip.data_types), 46

date (pycomm3.cip.data_types.DataTypes attribute), 52

DATE_AND_TTIME (class in pycomm3.cip.data_types), 46

date_and_time (pycomm3.cip.data_types.DataTypes
attribute), 52

decode() (pycomm3.cip.data_types.CIPSegment class
method), 50

decode() (pycomm3.cip.data_types.DataType class
method), 44

decode() (pycomm3.cip.data_types. EPATH class
method), 49

decode() (pycomm3.cip.data_types.STRINGI class
method), 50

DerivedDataType (class in pycomm3.cip.data_types),
50

DINT (class in pycomm3.cip.data_types), 45
dint (pycomm3.cip.data_types.DataTypes attribute), 51

67

pycomma3, Release 1.2.14

discover () (pycomm3.CIPDriver class method), 38
DWORD (class in pycomm3.cip.data_types), 48
dword (pycomm3.cip.data_types.DataTypes attribute), 52

E

ElementaryDataType (class in py-
comm3.cip.data_types), 44

ElementaryDataTypeSegment (class in py-

comm3.cip.data_types), 51

encode() (pycomm3.cip.data_types.CIPSegment class
method), 50

encode() (pycomm3.cip.data_types.DataType
method), 44

encode() (pycomm3.cip.data_types.DATE_AND_TIME
class method), 46

class

encode() (pycomm3.cip.data_types.EPATH class
method), 49

encode() (pycomm3.cip.data_types.STRINGI class
method), 50

encode() (pycomm3.cip.data_types.STRINGN class
method), 49

encoding (pycomm3.cip.data_types.STRING?2 attribute),
48

encoding (pycomm3.cip.data_types.StringDataType at-
tribute), 47

ENGUNIT (class in pycomm3.cip.data_types), 50

engunit (pycomm3.cip.data_types.DataTypes attribute),
53

EPATH (class in pycomm3.cip.data_types), 49

error (pycomm3.Tag property), 13

F

FixedSizeString() (in
comm3.custom_types), 53

FTIME (class in pycomm3.cip.data_types), 48

ftime (pycomm3.cip.data_types.DataTypes attribute), 52

G

generic_message() (pycomm3.CIPDriver method), 38
get_module_info() (pycomm3.CIPDriver method), 38
get_plc_info() (pycomm3.LogixDriver method), 41
get_plc_name() (pycomm3.LogixDriver method), 41
get_plc_time() (pycomm3.LogixDriver method), 41
get_tag_info() (pycomm3.LogixDriver method), 43
get_tag_list() (pycomm3.LogixDriver method), 41

module py-

H

host_type (pycomm3.cip.data_types.BYTE attribute),
47

host_type (pycomm3.cip.data_types. DWORD at-
tribute), 48

host_type (pycomm3.cip.data_types.LWORD attribute),
48

host_type (pycomm3.cip.data_types. WORD attribute),
47

info (pycomm3.LogixDriver property), 40

INT (class in pycomm3.cip.data_types), 45

int (pycomm3.cip.data_types.DataTypes attribute), 51
IPAddress (class in pycomm3.custom_types), 53

ITIME (class in pycomm3.cip.data_types), 48

itime (pycomm3.cip.data_types.DataTypes attribute), 53

L

len_type (pycomm3.cip.data_types. LOGIX_STRING at-
tribute), 47

len_type (pycomm3.cip.data_types.SHORT _STRING
attribute), 49

len_type (pycomm3.cip.data_types.STRING attribute),
47

len_type (pycomm3.cip.data_types.STRING?2 attribute),
48

len_type (pycomm3.cip.data_types.StringDataType at-
tribute), 47

LINT (class in pycomm3.cip.data_types), 45

lint (pycomm3.cip.data_types.DataTypes attribute), 52

list_identity () (pycomm3.CIPDriver class method),
38

ListIdentityObject (class in
comm3.custom_types), 53

logical_types (pycomm3.cip.data_types.LogicalSegment
attribute), 51

LogicalSegment (class in pycomm3.cip.data_types), 51

LOGIX_STRING (class in pycomm3.cip.data_types), 47

logix_string (pycomm3.cip.data_types.DataTypes at-
tribute), 52

LogixDriver (class in pycomm3), 39

LREAL (class in pycomm3.cip.data_types), 46

lreal (pycomm3.cip.data_types.DataTypes attribute), 52

LTINME (class in pycomm3.cip.data_types), 48

1time (pycomm3.cip.data_types.DataTypes attribute), 52

LWORD (class in pycomm3.cip.data_types), 48

lword (pycomm3.cip.data_types.DataTypes attribute), 52

M

module
pycomm3.cip.data_types, 44
pycomm3.custom_types, 53
ModulelIdentityObject (class in
comm3.custom_types), 53

py-

N

n_bytes() (in module pycomm3.cip.data_types), 47
name (pycomm3.LogixDriver property), 41
NetworkSegment (class in pycomm3.cip.data_types), 51

68

Index

pycomma3, Release 1.2.14

O

open() (pycomm3.CIPDriver method), 38
open() (pycomm3.LogixDriver method), 40

P

PACKED_EPATH (class in pycomm3.cip.data_types), 49
packed_epath (pycomm3.cip.data_types.DataTypes at-
tribute), 53
PADDED_EPATH (class in pycomm3.cip.data_types), 50
padded_epath (pycomm3.cip.data_types.DataTypes at-
tribute), 53
port_segments (pycomm3.cip.data_types.PortSegment
attribute), 51
PortSegment (class in pycomm3.cip.data_types), 51
pycomm3.cip.data_types
module, 44
pycomm3.custom_types
module, 53

R

read () (pycomm3.LogixDriver method), 42

read() (pycomm3.SLCDriver method), 43

REAL (class in pycomm3.cip.data_types), 46

real (pycomm3.cip.data_types.DataTypes attribute), 52
Revision (class in pycomm3.custom_types), 53
revision_major (pycomm3.LogixDriver property), 40

S

set_plc_time() (pycomm3.LogixDriver method), 41

SHORT_STRING (class in pycomm3.cip.data_types), 49

short_string (pycomm3.cip.data_types.DataTypes at-
tribute), 53

SINT (class in pycomm3.cip.data_types), 44

sint (pycomm3.cip.data_types.DataTypes attribute), 51

size (pycomm3.cip.data_types.BOOL attribute), 44

size (pycomm3.cip.data_types.BYTE attribute), 47

size (pycomm3.cip.data_types. DATE_AND_TIME at-
tribute), 46

size (pycomm3.cip.data_types.DINT attribute), 45

size (pycomm3.cip.data_types. DWORD attribute), 48

size (pycomm3.cip.data_types.ElementaryDataType at-
tribute), 44

size (pycomm3.cip.data_types.INT attribute), 45

size (pycomm3.cip.data_types.LINT attribute), 45

size (pycomm3.cip.data_types.LREAL attribute), 46

size (pycomm3.cip.data_types.LWORD attribute), 48

size (pycomm3.cip.data_types.REAL attribute), 46

size (pycomm3.cip.data_types.SINT attribute), 44

size (pycomm3.cip.data_types.UDINT attribute), 45

size (pycomm3.cip.data_types.UINT attribute), 45

size (pycomm3.cip.data_types.ULINT attribute), 46

size (pycomm3.cip.data_types.USINT attribute), 45

size (pycomm3.cip.data_types. WORD attribute), 47

SLCDriver (class in pycomm3), 43

socket_timeout (pycomm3.CIPDriver property), 38

STIME (class in pycomm3.cip.data_types), 46

stime (pycomm3.cip.data_types.DataTypes attribute), 52

STRING (class in pycomm3.cip.data_types), 47

string (pycomm3.cip.data_types.DataTypes attribute),
52

STRING2 (class in pycomm3.cip.data_types), 48

string2 (pycomm3.cip.data_types.DataTypes attribute),
52

StringDataType (class in pycomm3.cip.data_types), 47

STRINGI (class in pycomm3.cip.data_types), 50

stringi (pycomm3.cip.data_types.DataTypes attribute),
53

STRINGN (class in pycomm3.cip.data_types), 48

stringn (pycomm3.cip.data_types.DataTypes attribute),
53

StructTemplateAttributes
comm3.custom_types), 53

StructType (class in pycomm3.cip.data_types), 50

SymbolicSegment (class in pycomm3.cip.data_types),
51

(in module py-

T

Tag (class in pycomm3), 13

tag (pycomm3.Tag property), 13

tags (pycomm3.LogixDriver property), 40

tags_json (pycomm3.LogixDriver property), 40

TIME (class in pycomm3.cip.data_types), 49

time (pycomm3.cip.data_types.DataTypes attribute), 53

TIME_OF_DAY (class in pycomm3.cip.data_types), 46

time_of_day (pycomm3.cip.data_types.DataTypes at-
tribute), 52

type (pycomm3.Tag property), 13

U

UDINT (class in pycomm3.cip.data_types), 45

udint (pycomm3.cip.data_types.DataTypes attribute), 52
UINT (class in pycomm3.cip.data_types), 45

uint (pycomm3.cip.data_types.DataTypes attribute), 52
ULINT (class in pycomm3.cip.data_types), 45

ulint (pycomm3.cip.data_types.DataTypes attribute), 52
USINT (class in pycomm3.cip.data_types), 45

usint (pycomm3.cip.data_types.DataTypes attribute), 52

V

value (pycomm3.Tag property), 13

W

WORD (class in pycomm3.cip.data_types), 47

word (pycomm3.cip.data_types.DataTypes attribute), 52
write() (pycomm3.LogixDriver method), 42

write() (pycomm3.SLCDriver method), 43

Index

69

	Introduction
	Drivers
	Disclaimer
	Setup
	Python and OS Support
	Contents
	Getting Started
	Creating a Driver
	Creating a LogixDriver
	Creating a SLCDriver

	Response Tag Object
	Data Types
	Elementary Types
	Structure Types
	Arrays

	Logging

	Driver Usage
	Using CIPDriver
	Discovery and Identification
	Module Identification

	Generic Messaging

	Using LogixDriver
	Tags and Data Types
	Tag Structure
	Structure Definitions

	Reading/Writing Tags
	Program-Scoped Tags
	Array Tags
	BOOL Arrays
	Reading Tags
	Writing Tags
	String Tags

	Using SLCDriver

	Examples
	Basic Reading and Writing Tag Examples
	Basic Reading
	Basic Writing

	Examples of Working with the Tag List
	Data Types
	Tag List
	Filtering

	Generic Messaging
	Accessing Drive Parameters
	Reading Device Statuses
	ENBT/EN2T OK LED Status
	Link Status
	Stratix Switch Power Status

	IP Configuration
	Static/DHCP/BOOTP Status
	Communication Module MAC Address

	Upload EDS File

	API Reference
	CIPDriver API
	LogixDriver API
	SLCDriver API
	Data Types
	Custom Types

	CIP Reference
	Ethernet/IP Encapsulation Commands
	CIP Services and Class Codes
	Identity Object
	Connection Manager Object
	File Object

	Contributing
	Contributing to pycomm3
	Who can contribute?

	Asking a question
	Submitting an Issue
	Bug Reports
	Feature Requests

	Submitting Changes
	New Feature or an Example?

	Release History
	1.2.14
	1.2.13
	CIPDriver

	1.2.11
	1.2.10
	CIPDriver

	1.2.9
	SLCDriver

	1.2.8
	LogixDriver

	1.2.7
	LogixDriver

	1.2.6
	LogixDriver

	1.2.5
	LogixDriver

	1.2.4
	LogixDriver

	1.2.3
	LogixDriver

	1.2.2
	CIPDriver
	LogixDriver

	1.2.1
	1.2.0
	LogixDriver
	SLCDriver

	1.1.1
	LogixDriver

	1.1.0
	LogixDriver

	1.0.1
	1.0.0
	Logix Driver

	Python Module Index
	Index

